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§1 Rate of return and volatility
The time value of money

The time value of money is the greater benefit of receiving money now rather than
later. It is the so-called time preference.

The principle of the time value of money explains why interest is paid or earned:
Interest, whether it is on a bank deposit (or debt), compensates the depositor (or
lender) for the time value of money.

It also underlies investment: investors are willing to forgo spending their money
now, if they expect a favorable return on their investment in the future.
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§1 Rate of return and volatility
Simple interest

Simple interest is calculated only on the principal amount.

Suppose FV is the final value, B is the initial balance, i is the interest rate, n is the
number of time periods, then, we have

FV = B (1 + i × n) .
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§1 Rate of return and volatility
Compound interest

Compound interest includes interest earned on the interest which was previously
accumulated.

Suppose FV is the final value, B is the initial balance, i is the interest rate, n is the
number of time periods, then,we have

FV = B(1 + i)× (1 + i)× ....(1 + i) = B(1 + i)n.

c©Shibo Bian (SUFE) Lecture: Financial Modelling 5 / 29



§1 Rate of return and volatility
Example of simple and compound interest

Suppose an investor deposits 10,000 yuan in the bank account for 5 years, the annal
interest rate is 2.5%.

Simple interest:

FV = 10,000× (1 + 2.5%× 5) = 11,250.

Compound interest:

FV = 10,000× (1 + 2.5%)5 = 11,314.
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§1 Rate of return and volatility
Continuous compound interest

As n, the number of compounding periods per year, increases to infinity, we have
the limiting case known as continuous compounding, i.e.,

lim
n→∞

B
�

1 +
r
n

�nt
= Ber t .

Final value at time T is

FVT = PVt × er (T−t), T > t .

Present value at time t is

PVt = FVT × e−r (T−t), T > t .
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§1 Rate of return and volatility
Volatility

Volatility (often denoted by symbol σ) is the degree of variation of a asset price
(or return) series over time.

Volatility is an important factor in options trading:

Black-Scholes (BS) option pricing formula.

Volatility has many other financial applications:

Calculating value at risk (VaR) in risk management;

Asset allocation under the mean-variance framework.
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§1 Rate of return and volatility
Volatility

Since asset price (return) is a stochastic process, the actual volatility is always an
unknown (unobservable). We only can get its estimations from historical observations
based on e.g. some financial time-series models:

Moving average (MA) model;

Generalized autoregressive conditional heteroskedasticity (GARCH) model
(Engle, 1982; Bollerslev, 1986).
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§1 Rate of return and volatility
Moving average model

We may get its estimations from e.g. moving average models based on M
observations:

Equally-weighting scheme:

σt
2 =

1
M − 1

×
MX

i=1

�
rt−i −

MP
j=1

rt−j

M

�2

;

General weighting scheme:

σt
2 =

1
M − 1

×
MX

i=1

ωt−i

�
rt−i −

MP
j=1

rt−j

M

�2

.
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§1 Rate of return and volatility
GARCH model

If an autoregressive moving average (ARMA) model is assumed for the error
variance, then, the model is a generalized autoregressive conditional
heteroskedasticity (GARCH) model.

The GARCH (p,q) model, following the notation of original paper (Bollerslev,
1986), is given by

yt = x ′t b + εt , εt | ψt−1 ∼ N
�

0, σ2
t

�
;

σ2
t = ω +

qX
i=1

αi ε
2
t−i +

pX
i=1

βi σ
2
t−i ,

where p is the order of the GARCH terms σ2, q is the order of the ARCH terms ε2.
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§2 Basic stochastic calculus
Outline

1 Stochastic process

2 Markov process

3 Martingale process

4 Brownian motion

5 Itô process and Itô’s lemma
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§2 Basic stochastic calculus
Stochastic process

Random variable:

A random variable X : Ω→ E is a measurable function from a set of all possible
outcomes Ω to a measurable space E .

Usually X is real-valued, i.e., E ⊆ R.

Stochastic process:

For a given probability space and a measurable space, (Ω,F ,P), a stochastic
process X is a collection of real-valued random variables, indexed by some set T,
which can be written as

{X (ω, t) : t ∈ T} ,

or,
{X (t) : t ∈ T} .

Stochastic process {X (t)}t∈T is a binary function defined on Ω×T.
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§2 Basic stochastic calculus
Markov process

A Markov process is a stochastic process that has Markov property, which means
the next value of the Markov process depends on the current (most recent) value,
but it is conditionally independent of all previous values of the stochastic process:

Pr
�

X (tn) ≤ xn | X (t1) = x1,X (t2) = x2, · · · ,X (tn−1) = xn−1
	

= Pr
�

X (tn) ≤ xn | X (tn−1) = xn−1
	
.
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§2 Basic stochastic calculus
Martingale process

A martingale process is a stochastic process with the property that, the
expectation of the next value of a martingale is equal to the current value given all
the previous values of the process, i.e.,

E
�
X (t) | X (s)

�
= X (s), s < t .

Martingales mathematically formalize the idea of a fair game, and they were
originally developed to show that it is not possible to win a fair game on average.
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§2 Basic stochastic calculus
Markov process v.s. martingale process
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§2 Basic stochastic calculus
Brownian motion or Wiener process

Brownian motion (BM) is named after Robert Brown, a British botanist, who
observed the random movement of pollen grains in water.

Brownian motion was analysed mathematically by the American mathematician
Norbert Wiener, so is also called a Wiener process.

As early as 1900, Louis Bachelier, in his thesis Theory of Speculation, proposed
Brownian motion as a model for the fluctuations of stock prices.
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§2 Basic stochastic calculus
Standard Brownian motion

The definition of a standard Brownian motion W (t) or Wt :

1 The path is continuous.

2 The path increments follow a normal distribution, i.e., for any time t ≥ 0 and time
period ∆t ≥ 0,

∆W (t) := W (t + ∆t)−W (t) = ε i
√

∆t , ε i ∼ N(0,1),

with zero initial value W (0) = 0, which implies that

∆W (t) ∼ N(0,∆t),

or,
W (T )−W (t) ∼ N (0,T − t) , T ≥ t ≥ 0.

3 The path increments are independent.

These are necessary and sufficient conditions for a process to be identified as a
standard Brownian motion.
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§2 Basic stochastic calculus
Standard Brownian motion
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§2 Basic stochastic calculus
Properties of Standard Brownian motion

W (t) is a Markov process, since for any s, t ≥ 0,

Pr {W (s + t) ≤ a | W (s) = x ,W (u),0 ≤ u ≤ s}

= Pr {W (s + t)−W (s) ≤ a− x | W (s) = x ,W (u),0 ≤ u ≤ s}

= Pr {W (s + t)−W (s) ≤ a− x | W (s) = x}

= Pr {W (s + t) ≤ a | W (s) = x} .

W (t) is a martingale process, since for any t ≥ s ≥ 0,

E [W (t) | W (s)]

= E
�
W (s) +

�
W (t)−W (s)

�
| W (s)

�
= E [W (s)] + E [W (t)−W (s) | W (s)]

= W (s).
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§2 Basic stochastic calculus
Normal Brownian motion

A normal Brownian motion X (t) is defined by the stochastic differential equation (SDE)

dX (t) = adt + bdW (t),

or,
X (t) = X (0) + at + bW (t),

where

adt is a deterministic term, a is drift rate;

bdW (t) is a random term, b is volatility;

X (0) is the initial value of X (t) at time 0.
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§2 Basic stochastic calculus
Itô process

More generally, X (t) is a Itô process if it satisfies the SDE

dX (t) = a (X , t) dt + b (X , t) dW (t),

or,

X (t) = X (0) +

tZ
0

a (X , s) ds +

tZ
0

b (X , s) dW (s),

where

a(·, ·) is drift rate, a function of X and t ;

b(·, ·) is volatility, a function of X and t .
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§2 Basic stochastic calculus
Itô’s lemma

If X (t) is a Itô process, and G (X , t) is a given function of X (t) and t , then, G (X , t)
satisfies the SDE

dG =

�
∂G
∂X

a +
∂G
∂t

+
1
2

∂2G
∂X2 b2

�
dt +

∂G
∂X

bdW (t),

which is the so-called Itô’s lemma.

c©Shibo Bian (SUFE) Lecture: Financial Modelling 23 / 29



§2 Basic stochastic calculus
Proof of Itô’s lemma

2-D Taylor expansion for the given function G (X , t) is

∆G =
∂G
∂x

∆X +
∂G
∂t

∆t +
1
2

∂2G
∂x2 ∆X2 +

∂2G
∂x∂t

∆X ∆t +
1
2

∂2G
∂t2 ∆t2 + . . .,

where
∆G := G(X + ∆X , t + ∆t)−G(X , t),

and the terms with orders greater than ∆t can be neglected.

If X (t) is a deterministic process, we get

∆G =
∂G
∂x

∆X +
∂G
∂t

∆t .

If X (t) is a stochastic process, we get

∆G =
∂G
∂X

∆X +
∂G
∂t

∆t +
1
2

∂2G
∂X2 (∆X )2,

where the last term is of order ∆t .
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§2 Basic stochastic calculus
Proof of Itô’s lemma

Substituting the time-discretized Itô process,

∆X (t) = a∆t + bε
√

∆t , ε ∼ N(0,1),

we derive

∆G =
∂G
∂X

∆X +
∂G
∂t

∆t +
1
2

∂2G
∂X2 b2ε2∆t ,

since ε ∼ N(0,1),

E[ε] = 0, Var[ε] = 1 = E[ε2]− (E[ε])2 ,

hence, we have E[ε2] = 1, and E[ε2∆t ] = ∆t .

Since the order of variance of ε2∆t is the same as ∆t2 which can be neglected, we
have

∆G =
∂G
∂X

∆X +
∂G
∂t

∆t +
1
2

∂2G
∂X2 b2∆t .
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§2 Basic stochastic calculus
Proof of Itô’s lemma

Let ∆t → dt , we derive the SDE

dG =
∂G
∂X

dX +
∂G
∂t

dt +
1
2

∂2G
∂X2 b2dt .

Substituting
dX (t) = adt + bdW (t),

we derive Itô’s lemma

dG =

�
∂G
∂X

a +
∂G
∂t

+
1
2

∂2G
∂X2 b2

�
dt +

∂G
∂X

bdW (t).
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§2 Basic stochastic calculus
Example: the log stock price ln S

We often assume the stock price S(t) follows a geometric Brownian motion
(GBM),

dS(t) = µS(t)dt + σS(t)dW (t),

where σ is the volatility of log-price.

Let G = ln S, we obtain

∂G
∂S

=
1
S
,

∂2G
∂S2 = − 1

S2 ,
∂G
∂t

= 0.

By Itô’s lemma, we derive

dG(t) = d
�

ln S(t)
�
=

�
µ− σ2

2

�
dt + σdW (t) ∼ N

��
µ− σ2

2

�
dt , σ2dt

�
,

since dW (t) ∼ N(0, dt).
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§2 Basic stochastic calculus
Why do we often assume the stock price follows a geometric Brownian motion?

S(t) is non-negative, which is consistent with the limited liability of a firm.

The continuously compounded rate of stock returns follows a normal distribution:

− The continuously compounded rate of stock returns on the time period [t ,T ] is

η :=
ln S(T )− ln S(t)

T − t
,

since S(T )/S(t) = eη(T−t).

− η follows a normal distribution, i.e.,

η ∼ N

�
µ− σ2

2
,

σ2

T − t

�
.

Empirical evidence shows that, the continuously compounded rate of stock returns
approximately follows a normal distribution under a normal market condition.
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