Lecture: Financial Modelling

- Preparation knowledge

Dr. Shibo Bian
Associate Professor of Finance

School of Statistics and Management Shanghai University of Finance and Economics

Outline

(1) Rate of return and volatility
(2) Basic stochastic calculus

§1 Rate of return and volatility

The time value of money

- The time value of money is the greater benefit of receiving money now rather than later. It is the so-called time preference.
- The principle of the time value of money explains why interest is paid or earned: Interest, whether it is on a bank deposit (or debt), compensates the depositor (or lender) for the time value of money.
- It also underlies investment: investors are willing to forgo spending their money now, if they expect a favorable return on their investment in the future.

§1 Rate of return and volatility

Simple interest

- Simple interest is calculated only on the principal amount.
- Suppose $F V$ is the final value, B is the initial balance, i is the interest rate, n is the number of time periods, then, we have

$$
F V=B(1+i \times n) .
$$

§1 Rate of return and volatility

Compound interest

- Compound interest includes interest earned on the interest which was previously accumulated.
- Suppose $F V$ is the final value, B is the initial balance, i is the interest rate, n is the number of time periods, then, we have

$$
F V=B(1+i) \times(1+i) \times \ldots . .(1+i)=B(1+i)^{n} .
$$

§1 Rate of return and volatility

Suppose an investor deposits 10,000 yuan in the bank account for 5 years, the annal interest rate is 2.5%.

- Simple interest:

$$
F V=10,000 \times(1+2.5 \% \times 5)=11,250 .
$$

- Compound interest:

$$
F V=10,000 \times(1+2.5 \%)^{5}=11,314
$$

§1 Rate of return and volatility

Continuous compound interest

- As n, the number of compounding periods per year, increases to infinity, we have the limiting case known as continuous compounding, i.e.,

$$
\lim _{n \rightarrow \infty} B\left(1+\frac{r}{n}\right)^{n t}=B e^{r t}
$$

- Final value at time T is

$$
F V_{T}=P V_{t} \times e^{r(T-t)}, \quad T>t
$$

- Present value at time t is

$$
P V_{t}=F V_{T} \times e^{-r(T-t)}, \quad T>t .
$$

§1 Rate of return and volatility

Volatility

- Volatility (often denoted by symbol σ) is the degree of variation of a asset price (or return) series over time.
- Volatility is an important factor in options trading:
- Black-Scholes (BS) option pricing formula.
- Volatility has many other financial applications:
- Calculating value at risk (VaR) in risk management;
- Asset allocation under the mean-variance framework.

§1 Rate of return and volatility

Since asset price (return) is a stochastic process, the actual volatility is always an unknown (unobservable). We only can get its estimations from historical observations based on e.g. some financial time-series models:

- Moving average (MA) model;
- Generalized autoregressive conditional heteroskedasticity (GARCH) model (Engle, 1982; Bollerslev, 1986).

§1 Rate of return and volatility

Moving average model

We may get its estimations from e.g. moving average models based on M observations:

- Equally-weighting scheme:

$$
\sigma_{t}^{2}=\frac{1}{M-1} \times \sum_{i=1}^{M}\left(r_{t-i}-\frac{\sum_{j=1}^{M} r_{t-j}}{M}\right)^{2}
$$

- General weighting scheme:

$$
\sigma_{t}^{2}=\frac{1}{M-1} \times \sum_{i=1}^{M} \omega_{t-i}\left(r_{t-i}-\frac{\sum_{j=1}^{M} r_{t-j}}{M}\right)^{2}
$$

§1 Rate of return and volatility

GARCH model

- If an autoregressive moving average (ARMA) model is assumed for the error variance, then, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.
- The $\operatorname{GARCH}(p, q)$ model, following the notation of original paper (Bollerslev, 1986), is given by

$$
\begin{aligned}
y_{t} & =x_{t}^{\prime} b+\varepsilon_{t}, \quad \varepsilon_{t} \mid \psi_{t-1} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2} & =\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{p} \beta_{i} \sigma_{t-i}^{2}
\end{aligned}
$$

where p is the order of the GARCH terms σ^{2}, q is the order of the ARCH terms ε^{2}.

§2 Basic stochastic calculus

Outline

(1) Stochastic process
(2) Markov process
(3) Martingale process
(0) Brownian motion
(0) Itô process and Itô's lemma

§2 Basic stochastic calculus

Stochastic process

Random variable:

- A random variable $X: \Omega \rightarrow E$ is a measurable function from a set of all possible outcomes Ω to a measurable space E.
- Usually X is real-valued, i.e., $E \subseteq \mathbb{R}$.

Stochastic process:

- For a given probability space and a measurable space, $(\Omega, \mathcal{F}, \mathcal{P})$, a stochastic process X is a collection of real-valued random variables, indexed by some set \mathbb{T}, which can be written as

$$
\{X(\omega, t): t \in \mathbb{T}\}
$$

or,

$$
\{X(t): t \in \mathbb{T}\}
$$

- Stochastic process $\{X(t)\}_{t \in \mathbb{T}}$ is a binary function defined on $\Omega \times \mathbb{T}$.

§2 Basic stochastic calculus

Markov process

- A Markov process is a stochastic process that has Markov property, which means the next value of the Markov process depends on the current (most recent) value, but it is conditionally independent of all previous values of the stochastic process:

$$
\begin{aligned}
& \operatorname{Pr}\left\{X\left(t_{n}\right) \leq x_{n} \mid X\left(t_{1}\right)=x_{1}, X\left(t_{2}\right)=x_{2}, \cdots, X\left(t_{n-1}\right)=x_{n-1}\right\} \\
= & \operatorname{Pr}\left\{X\left(t_{n}\right) \leq x_{n} \mid X\left(t_{n-1}\right)=x_{n-1}\right\} .
\end{aligned}
$$

§2 Basic stochastic calculus

Martingale process

- A martingale process is a stochastic process with the property that, the expectation of the next value of a martingale is equal to the current value given all the previous values of the process, i.e.,

$$
\mathbb{E}[X(t) \mid X(s)]=X(s), \quad s<t
$$

- Martingales mathematically formalize the idea of a fair game, and they were originally developed to show that it is not possible to win a fair game on average.

§2 Basic stochastic calculus

Markov process v.s. martingale process

§2 Basic stochastic calculus

- Brownian motion (BM) is named after Robert Brown, a British botanist, who observed the random movement of pollen grains in water.
- Brownian motion was analysed mathematically by the American mathematician Norbert Wiener, so is also called a Wiener process.
- As early as 1900, Louis Bachelier, in his thesis Theory of Speculation, proposed Brownian motion as a model for the fluctuations of stock prices.

§2 Basic stochastic calculus

Standard Brownian motion

The definition of a standard Brownian motion $W(t)$ or W_{t} :
(1) The path is continuous.
(2) The path increments follow a normal distribution, i.e., for any time $t \geq 0$ and time period $\Delta t \geq 0$,

$$
\Delta W(t):=W(t+\Delta t)-W(t)=\varepsilon_{i} \sqrt{\Delta t}, \quad \varepsilon_{i} \sim \mathrm{~N}(0,1)
$$

with zero initial value $W(0)=0$, which implies that

$$
\Delta W(t) \sim \mathrm{N}(0, \Delta t),
$$

or,

$$
W(T)-W(t) \sim N(0, T-t), \quad T \geq t \geq 0 .
$$

(3) The path increments are independent.

These are necessary and sufficient conditions for a process to be identified as a standard Brownian motion.

§2 Basic stochastic calculus

Standard Brownian motion

§2 Basic stochastic calculus

Properties of Standard Brownian motion

- $W(t)$ is a Markov process, since for any $s, t \geq 0$,

$$
\begin{aligned}
& \operatorname{Pr}\{W(s+t) \leq a \mid W(s)=x, W(u), 0 \leq u \leq s\} \\
= & \operatorname{Pr}\{W(s+t)-W(s) \leq a-x \mid W(s)=x, W(u), 0 \leq u \leq s\} \\
= & \operatorname{Pr}\{W(s+t)-W(s) \leq a-x \mid W(s)=x\} \\
= & \operatorname{Pr}\{W(s+t) \leq a \mid W(s)=x\} .
\end{aligned}
$$

- $W(t)$ is a martingale process, since for any $t \geq s \geq 0$,

$$
\begin{aligned}
& \mathbb{E}[W(t) \mid W(s)] \\
= & \mathbb{E}[W(s)+(W(t)-W(s)) \mid W(s)] \\
= & \mathbb{E}[W(s)]+\mathbb{E}[W(t)-W(s) \mid W(s)] \\
= & W(s) .
\end{aligned}
$$

§2 Basic stochastic calculus

Normal Brownian motion

A normal Brownian motion $X(t)$ is defined by the stochastic differential equation (SDE)

$$
\mathrm{d} X(t)=a \mathrm{~d} t+b \mathrm{~d} W(t)
$$

or,

$$
X(t)=X(0)+a t+b W(t)
$$

where

- adt is a deterministic term, a is drift rate;
- $b \mathrm{~d} W(t)$ is a random term, b is volatility;
- $X(0)$ is the initial value of $X(t)$ at time 0 .

§2 Basic stochastic calculus

More generally, $X(t)$ is a ltô process if it satisfies the SDE

$$
\mathrm{d} X(t)=a(X, t) \mathrm{d} t+b(X, t) \mathrm{d} W(t),
$$

or,

$$
X(t)=X(0)+\int_{0}^{t} a(X, s) \mathrm{d} s+\int_{0}^{t} b(X, s) \mathrm{d} W(s)
$$

where

- a($\cdot, \cdot)$ is drift rate, a function of X and t;
- $b(\cdot, \cdot)$ is volatility, a function of X and t.

§2 Basic stochastic calculus

Itô's lemma

If $X(t)$ is a Itô process, and $\mathcal{G}(X, t)$ is a given function of $X(t)$ and t, then, $G(X, t)$ satisfies the SDE

$$
\mathrm{d} G=\left(\frac{\partial G}{\partial X} a+\frac{\partial G}{\partial t}+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}} b^{2}\right) \mathrm{d} t+\frac{\partial G}{\partial X} b \mathrm{~d} W(t)
$$

which is the so-called Itô's lemma.

§2 Basic stochastic calculus

Proof of Itô's lemma

- 2-D Taylor expansion for the given function $G(X, t)$ is

$$
\Delta G=\frac{\partial G}{\partial x} \Delta X+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} \Delta X^{2}+\frac{\partial^{2} G}{\partial x \partial t} \Delta X \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial t^{2}} \Delta t^{2}+\ldots,
$$

where

$$
\Delta G:=G(X+\Delta X, t+\Delta t)-G(X, t)
$$

and the terms with orders greater than Δt can be neglected.

- If $X(t)$ is a deterministic process, we get

$$
\Delta G=\frac{\partial G}{\partial x} \Delta X+\frac{\partial G}{\partial t} \Delta t .
$$

- If $X(t)$ is a stochastic process, we get

$$
\Delta G=\frac{\partial G}{\partial X} \Delta X+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}}(\Delta X)^{2}
$$

where the last term is of order Δt.

§2 Basic stochastic calculus

Proof of ltô's lemma

- Substituting the time-discretized Itô process,

$$
\Delta X(t)=a \Delta t+b \varepsilon \sqrt{\Delta t}, \quad \varepsilon \sim N(0,1)
$$

we derive

$$
\Delta G=\frac{\partial G}{\partial X} \Delta X+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}} b^{2} \varepsilon^{2} \Delta t
$$

since $\varepsilon \sim N(0,1)$,

$$
\mathbb{E}[\varepsilon]=0, \quad \operatorname{Var}[\varepsilon]=1=\mathbb{E}\left[\varepsilon^{2}\right]-(\mathbb{E}[\varepsilon])^{2}
$$

hence, we have $\mathbb{E}\left[\varepsilon^{2}\right]=1$, and $\mathbb{E}\left[\varepsilon^{2} \Delta t\right]=\Delta t$.

- Since the order of variance of $\varepsilon^{2} \Delta t$ is the same as Δt^{2} which can be neglected, we have

$$
\Delta G=\frac{\partial G}{\partial X} \Delta X+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}} b^{2} \Delta t
$$

§2 Basic stochastic calculus

Proof of ltô's lemma

- Let $\Delta t \rightarrow \mathrm{~d} t$, we derive the SDE

$$
\mathrm{d} G=\frac{\partial G}{\partial X} \mathrm{~d} X+\frac{\partial G}{\partial t} \mathrm{~d} t+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}} b^{2} \mathrm{~d} t
$$

- Substituting

$$
\mathrm{d} X(t)=a \mathrm{~d} t+b \mathrm{~d} W(t)
$$

we derive Itô's lemma

$$
\mathrm{d} G=\left(\frac{\partial G}{\partial X} a+\frac{\partial G}{\partial t}+\frac{1}{2} \frac{\partial^{2} G}{\partial X^{2}} b^{2}\right) \mathrm{d} t+\frac{\partial G}{\partial X} b \mathrm{~d} W(t)
$$

§2 Basic stochastic calculus

Example: the log stock price in S

- We often assume the stock price $S(t)$ follows a geometric Brownian motion (GBM),

$$
\mathrm{d} S(t)=\mu S(t) \mathrm{d} t+\sigma S(t) \mathrm{d} W(t)
$$

where σ is the volatility of log-price.

- Let $G=\ln S$, we obtain

$$
\frac{\partial G}{\partial S}=\frac{1}{S}, \quad \frac{\partial^{2} G}{\partial S^{2}}=-\frac{1}{S^{2}}, \quad \frac{\partial G}{\partial t}=0 .
$$

- By Itô's lemma, we derive

$$
\mathrm{d} \boldsymbol{G}(t)=\mathrm{d}(\ln S(t))=\left(\mu-\frac{\sigma^{2}}{2}\right) \mathrm{d} t+\sigma \mathrm{d} \boldsymbol{W}(t) \sim \mathrm{N}\left(\left(\mu-\frac{\sigma^{2}}{2}\right) \mathrm{d} t, \sigma^{2} \mathrm{~d} t\right)
$$

since $\mathrm{d} W(t) \sim \mathrm{N}(0, \mathrm{~d} t)$.

§2 Basic stochastic calculus

Why do we often assume the stock price follows a geometric Brownian motion?

- $S(t)$ is non-negative, which is consistent with the limited liability of a firm.
- The continuously compounded rate of stock returns follows a normal distribution:
- The continuously compounded rate of stock returns on the time period $[t, T]$ is

$$
\eta:=\frac{\ln S(T)-\ln S(t)}{T-t}
$$

since $S(T) / S(t)=e^{\eta(T-t)}$.

- η follows a normal distribution, i.e.,

$$
\eta \sim \mathrm{N}\left(\mu-\frac{\sigma^{2}}{2}, \frac{\sigma^{2}}{T-t}\right) .
$$

- Empirical evidence shows that, the continuously compounded rate of stock returns approximately follows a normal distribution under a normal market condition.

References

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307-327.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4):987-1007.

