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§1 Pricing Option by Classical Black-Scholes Model
Review: Option Basics

Call Option: an option which gives the right (not obligation) to buy a certain
asset1 S for a certain price (strike or exercise price) K by a certain date (maturity
date) T . It could be one of a virtual infinity types.

Put Option: an option which gives the right (not obligation) to sell a certain asset
for a certain price (strike or exercise price) by a certain date (maturity date).

Options are traded on exchanges and OTC markets.

World largest exchange for trading stock options: Chicago Board Options
Exchange (CBOE).

1This could be one of assets (e.g. stock shares, bonds), which are called primitives, however,
there are only a finite number of them.
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§1 Pricing Option by Classical Black-Scholes Model
Review: Option Basics

Chinese options

SSE 50 ETF option
traded at Shanghai Stock Exchange (SSE)
effective from Feb 9 2015
European option

Soybean meal option
traded at Dalian Commodity Exchange (DCE)
effective from Mar 31 2017
American option

Sugar option
traded at Zhengzhou Commodity Exchange (ZCE)
effective from Apr 19 2017
American option
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§1 Pricing Option by Classical Black-Scholes Model
Review: Option Basics

Copper option
traded at Shanghai Futures Exchange (SFE)
effective from May 21 2018
European option

Cotton option
traded at Zhengzhou Commodity Exchange (ZCE)
effective from Jan 28 2019
American option

Rubber option
traded at Shanghai Futures Exchange (SFE)
effective from Jan 28 2019
American option

Corn option
traded at Dalian Commodity Exchange (DCE)
effective from Jan 28 2019
American option
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§1 Pricing Option by Classical Black-Scholes Model
Review: Option Basics

European option can be exercised only at maturity.

American option can be exercised at any time during its life.

Out-of-the-money (OTM) option: a call option where the strike price is above the
price of the underlying asset; or, a put option where the strike price is below this
price.

In-the-money (ITM) option: a call option where the strike price is below the price
of the underlying asset; or, a put option where the strike price is above this price.

At-the-money (ATM) option: an option where the strike price is close to the price
of the underlying asset.
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§1 Pricing Option by Classical Black-Scholes Model
European Call and Put Options

European call: the payoff (promised gross payment) at maturity is a function of
underlying stock price at maturity, according to

payoff(T ) = (ST − K )+ :=

¨
ST − K , if ST > K ,
0, if ST ≤ K ,

(1)

where T is maturity time, {St}0≤t≤T is stock price, K is strick price.

European put: the payoff at maturity is a function of underlying stock price at
maturity, according to

payoff(T ) = (K − ST )
+ :=

¨
K − ST , if K > ST ,
0, if K ≤ ST .

(2)

Note that, in exchange-traded equity-option market, one option contract is usually
an agreement to buy or sell 100 units of underlying shares.
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§1 Pricing Option by Classical Black-Scholes Model
Examples of Market Prices of (American) Call and Put Options
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§1 Pricing Option by Classical Black-Scholes Model
Put-Call Parity for European Options

Due to no arbitrage opportunity, put-call parity (Stoll, 1969) defines a relationship
between prices of a European call, a European put of identical underlying
non-dividend paying stock S, strike price K and maturity T by

C(t)− P(t) ≡ St − e−r (T−t)K , ∀ 0 ≤ t ≤ T , (3)

where C(t),P(t) are prices of European call and put at time t , respectively.
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§1 Pricing Option by Classical Black-Scholes Model
Put-Call Parity for European Options

Imagine that you buy one European call option and write a European put option
with the same strike and maturity. The payoff for this portfolio of options is

max (ST − K ,0)−max (K − ST ,0) = ST − K

where ST is the value of the underlying asset at time T .
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§1 Pricing Option by Classical Black-Scholes Model
Put-Call Parity for European Options

Consider the following two portfolios
Portfolio A: one European call option plus a zero-coupon bond that provides a
payoff of K at time T
Portfolio B: one European put option plus one share of the stock.

ST > K ST < K

Portfolio A Call option ST − K 0
Zero-coupon bond K K
Total ST K

Portfolio B Put option 0 K − ST

Share ST ST

Total ST K

If ST > K , both portfolios are worth ST at time T ; if ST < K , both portfolios are
worth K at time T . In other words, both are worth

max (ST ,K ,)
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§1 Pricing Option by Classical Black-Scholes Model
Put-Call Parity for European Options

Put-call parity is model-free, no assumption for the evolution of underlying price
process St . Note that, it does not apply to American options.

Hence, we focus on pricing European call options.
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§1 Pricing Option by Classical Black-Scholes Model
Example: S&P 500 Index Level (1950-2012)

Figure: S&P 500 Index Level (1950-2012)
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§1 Pricing Option by Classical Black-Scholes Model
History and Evolution of Financial Modelling Techniques

Early evolution of techniques of financial modelling:

Jules Regnault first suggested a modern theory of stock price changes used
random walk in his book Calculation of Chances and Philosophy of the Stock
Exchange (1863).

Louis Bachelier first used the stochastic process now named Brownian motion in
his PhD thesis The Theory of Speculation (1900).
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§1 Pricing Option by Classical Black-Scholes Model
Black-Scholes Model for Option Pricing

The classical Black-Scholes (BS) model2 (Black and Scholes, 1973; Merton,
1973) assumes that, stock price {St}t≥0 follows geometric Brownian motion
(GBM)3 under risk-neutral probability measure Q, i.e. stochastic differential
equation (SDE)

dSt
St

= rdt + σdWt , (4)

where

r > 0 is constant default-free instantaneous interest rate;

σ > 0 is the assumed constant instantaneous volatility of log-return of stock price;

Wt is Brownian motion.

It is a stochastic and continuous-path model.

2Or Black-Scholes-Merton model. BS model is the continuous-time limit of the classical
discrete-time binomial tree model of Cox et al. (1979).

3Osborne (1959) first advocated GBM as a model for asset prices.
c©Shibo Bian (SUFE) Lecture: Financial Modelling 15 / 120



§1 Pricing Option by Classical Black-Scholes Model
Black-Scholes Model for Option Pricing
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Figure: Realizations of geometric Brownian motions
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§1 Pricing Option by Classical Black-Scholes Model
Black-Scholes Model for Option Pricing
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§1 Pricing Option by Classical Black-Scholes Model
Black-Scholes Model for Option Pricing
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Figure: Realizations of geometric Brownian motions
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§1 Pricing Option by Classical Black-Scholes Model
Black-Scholes Formula for Option Pricing

Black-Scholes formula for valuing a European call option at time t on a
non-dividend paying stock is

CB−S(S,K , r , σ; t ,T ) = e−r (T−t)EQ
�
(ST − K )+ | Ft

�
(5)

= SΦ(d+)− Ke−r (T−t)Φ(d−), (6)

where S := St ,

d+ :=
ln(S/K ) + (r + σ2/2)(T − t)

σ
√

T − t
, d− :=

ln(S/K ) + (r − σ2/2)(T − t)
σ
√

T − t
,

d− = d+ − σ
p

(T − t); function Φ(·) is CDF of N (0,1), i.e.

Φ(x) :=

xZ
−∞

1√
2π

e−
u2
2 du.

The values of S, r ,K , t ,T are all observable, only volatility σ need
estimation/calibration, but how?

Note that, volatility σ is assumed for the future time period of [t ,T ].
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility

B-S implied volatility is the volatility of underlying which when substituted into
B-S formula gives a theoretical price equal to the observed market price, i.e.

CB−S(σ) = Market Price. (9)

In a sense, it is market’s (forward-looking and subjective) view of volatility of the
underlying over the life of option.

In B-S model, price of European call is a strictly increasing function of σ, so, implied
volatility4 uniquely exists, i.e.

σ = C−1
B−S(Market Price); (10)

however, no analytic form exists, and numerical inverting5 is needed.

4B-S implied volatility is a wrong number which, plugged into the wrong formula, gives the right
answer (Rebonato, 2005), however, option prices are commonly quoted in term of it.

5e.g. Newton-Raphson search (Manaster and Koehler, 1982).
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§1 Pricing Option by Classical Black-Scholes Model
Mona Lisa’s Smile :-)
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility: Volatility Smile

B-S implied volatilities often present "volatility smile" for options of different strikes
on identical underlying (Rubinstein, 1985):
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§1 Pricing Option by Classical Black-Scholes Model
Volatility smile for foreign currency options

The volatility smile used by traders to price foreign currency options has the
general form shown in figure below. The implied volatility is relatively low for
at-the-money options. It becomes progressively higher as an option moves either
into the money or out of the money.
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§1 Pricing Option by Classical Black-Scholes Model
Implied and lognormal distribution for foreign currency options
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility: Empirical Volatility Smiles on Stock Indexes (Jackwerth, 2004)

Option-Implied Risk-Neutral Distributions and Risk Aversion

©2004, The Research Foundation of AIMR™ 7

prices adjust rapidly once learning takes place. Unfortunately, according to
these models, decreases in asset prices are as likely as increases in asset
prices, whereas the downward-sloping volatility smile suggests that decreases
in asset prices are more likely than increases. The smile is thus more in tune
with our understanding that markets sometimes melt down but rarely ever
“melt up.” On a downward-sloping volatility smile, the OUT-OF-THE-MONEY PUTS

are relatively expensive. Those PUT OPTIONS essentially provide portfolio insur-
ance; that is, they pay off when the market crashes. The options are thus priced
in such a way that they incorporate some investors’ fear that market crashes
are rather likely.

Figure 1. Empirical Volatility Smiles on Four International Indexes

Note: Moneyness = Strike price/Index level.
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility: Skew after 1987’s Wall Street Crash

Skew or smirk: as found by Bates (1991), after 1987’s Wall Street crash or Black Monday (-22.9% return
on SPX on October 19, 1987). OTM calls tend to be less expensive than suggested by the options
models, while OTM puts6 tend to be more expensive, see Bollen and Whaley (2004); Garleanu et al.
(2009); Bondarenko (2014).

New pricing models are needed!

Crash of ’87 also gave birth to high-frequency trading (HFT): Nasdaq made mandatory for market makers
to instantly execute trades of 1,000 shares or less by retail investors in its Small Order Execution System
(SOES). Market makers and institutional investors, who usually traded in much bigger chunks of stock,
had to wait in line behind SOES traders.

6OTM puts essentially provide portfolio insurance, as they pay off when the market crashes.
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§1 Pricing Option by Classical Black-Scholes Model
Implied and lognormal distribution for equity options
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§1 Pricing Option by Classical Black-Scholes Model
Statistical Volatility

Statistical volatility (or, realized volatility) is the actual volatility directly
estimated from time series of historical prices of underlying stock.

In a sense, it is historical summary of volatility of underlying.

In B-S model, stock price is assumed to follow geometric Brownian motion, then,
statistical volatility is standard deviation of time series of continuously-compounded
log-returns

�
R1,R2, ...,RT

	
where

Rt := ln St − ln St−1, t = 1,2, ...,T − 1. (11)

For high-frequency intraday data, the formula of realized volatility is different, see
Andersen et al. (2001), Andersen et al. (2003).
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility v.s. Statistical Volatility

Figure: Monthly implied volatility (VIX) v.s. statistical volatility of S&P 500, 01/1986 – 03/2011
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility v.s. Statistical Volatility

B-S implied volatility is widely believed to be a good estimate of "market’s"
expectation of the volatility of underlying asset over the remaining life of the option.
If option markets are efficient, implied volatility should be an efficient forecast of
future volatility, i.e., implied volatility should subsume the information contained in
all other variables in the market information set in explaining future volatility
(Christensen and Prabhala, 1998).

Researchers often use B-S implied volatility in other models as an ex ante
measure of perceived asset price risk (Poterba and Summers, 1986; Stein, 1989).
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§1 Pricing Option by Classical Black-Scholes Model
B-S Implied Volatility v.s. Statistical Volatility

Empirical studies on the relationship between the two volatilities: Latane and
Rendleman (1976), Chiras and Manaster (1978), Beckers (1981), Day and Lewis
(1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Jorion
(1995), Christensen and Prabhala (1998), Blair et al. (2001); theories in Bergman
et al. (1996).

Note that,

Risk-neutral Probability = Subjective Probability×Risk-aversion Adjustment.
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§1 Pricing Option by Classical Black-Scholes Model
Volatility in Option Pricing Model: Fear Gauge VIX
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§1 Pricing Option by Classical Black-Scholes Model
Financial Innovation: SPX v.s. VIX, VIX Trading, and Forward-looking Risk Management
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Figure 2.1 – The evolution of the Standard & Poor’s 500 index (blue solid line) and the CBOE volatility
index (black solid line) during the sample period 03/01/2005 – 02/08/2013. The y-axes correspond to the
index levels.

In Table 2.2 the first four moments of the SPX log-returns and the VIX levels, over three periods
of time, are depicted. The first period spans approximately the pre-crisis period, i.e. from January 3,
2005, until May 2, 2008. The second period covers the crisis from May 5, 2008, up to July 1, 2010. The
third period coincides with the post-crisis period from July 2, 2010, till August 1, 2013. We see overall
that the log-returns of the SPX exhibit a lower skewness but a higher excess kurtosis, which implies a
leptokurtic behavior indicating rare but sharp movements in the tails. One way to model this issue is
to let the jump intensity in the (discounted) logarithmic price process be stochastic (cf. Assumption 2.1
and Assumption 2.4). Further, the VIX levels follow a skewed but not highly leptokurtic distribution
which can be modeled via a general Lévy density using a different scaling for up– and down jumps (cf.
Section 2.5.2).

Correlation Coefficients between SPX– and VIX Levels

03/01/2005 – 02/08/2013 05/07/2007 – 02/08/2013 20/07/2009 – 02/08/2013

-0.6539 -0.7261 -0.6670

03/01/2005 – 02/05/2008 05/05/2008 – 01/07/2010 02/07/2010 – 02/08/2013

0.3259 -0.6905 -0.6971

Table 2.1 – Correlation coefficients for the Standard & Poor’s 500 index and the volatility index for different
date intervals, covering the pre-crisis–, crisis–, and post-crisis periods. The sample period consists of the
period 03/01/2005 – 02/08/2013.

Pascal Marco Caversaccio 2014 c©

Figure: VIX v.s. SPX (Standard & Poor’s 500 Index), 03/01/2005 – 02/08/2013
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§1 Pricing Option by Classical Black-Scholes Model
Volatility in Option Pricing Model: Correlation between VIX and SPX

VIX tends to rise when the S&P 500 falls; VIX tends to decline or remain constant
when the S&P 500 rises.

Pre-crisis-, crisis-, and post-crisis correlation coefficients for the SPX and VIX:

2.3. DATA ANALYSIS AND STYLIZED FACTS OF THE VIX AND SPX 15
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Figure 2.1 – The evolution of the Standard & Poor’s 500 index (blue solid line) and the CBOE volatility
index (black solid line) during the sample period 03/01/2005 – 02/08/2013. The y-axes correspond to the
index levels.

In Table 2.2 the first four moments of the SPX log-returns and the VIX levels, over three periods
of time, are depicted. The first period spans approximately the pre-crisis period, i.e. from January 3,
2005, until May 2, 2008. The second period covers the crisis from May 5, 2008, up to July 1, 2010. The
third period coincides with the post-crisis period from July 2, 2010, till August 1, 2013. We see overall
that the log-returns of the SPX exhibit a lower skewness but a higher excess kurtosis, which implies a
leptokurtic behavior indicating rare but sharp movements in the tails. One way to model this issue is
to let the jump intensity in the (discounted) logarithmic price process be stochastic (cf. Assumption 2.1
and Assumption 2.4). Further, the VIX levels follow a skewed but not highly leptokurtic distribution
which can be modeled via a general Lévy density using a different scaling for up– and down jumps (cf.
Section 2.5.2).

Correlation Coefficients between SPX– and VIX Levels

03/01/2005 – 02/08/2013 05/07/2007 – 02/08/2013 20/07/2009 – 02/08/2013

-0.6539 -0.7261 -0.6670

03/01/2005 – 02/05/2008 05/05/2008 – 01/07/2010 02/07/2010 – 02/08/2013

0.3259 -0.6905 -0.6971

Table 2.1 – Correlation coefficients for the Standard & Poor’s 500 index and the volatility index for different
date intervals, covering the pre-crisis–, crisis–, and post-crisis periods. The sample period consists of the
period 03/01/2005 – 02/08/2013.
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§2 Risk, Hedging and Cost
Risk Functioning in Financial Institutions

Front Office for trading function
hedges risks by ensuring that exposures to individual market variables are not too great
(e.g. Greek letters).

Middle Office concerned with the overall level of the risks being taken, capital
adequacy and regulatory compliance

aggregates the exposures of all traders to determine whether the total risk is
acceptable (e.g. Value at Risk).

Back Office for record/archives keeping function
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§2 Risk, Hedging and Cost
Greek Letters (Greeks)

Greek Letters: Delta (∆), Gamma (Γ), Vega (ν), Theta (Θ), Rho (ρ), . . ..

Each measures the sensitivity from a different aspect of the risk in a trading
position.

Traders calculate their Greeks at the end of each day, and are required to take
action if the internal risk limits are exceeded.

Failure to take this action is liable to lead to immediate dismissal.
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§2 Risk, Hedging and Cost
Delta

Delta of an asset (or an asset portfolio) is partial derivative of a asset (or an asset
portfolio) price P with respect to price of underlying asset, i.e.

∆ :=
∂P
∂S
≈ P(S + ∆S)− P(S)

∆S
, (12)

where ∆S is a small increment, P is asset (or a portfolio) value.

In B-S model, for a European call on a non-dividend stock,

∆ =
∂CB−S(S,K , r , σ; t ,T )

∂S
= Φ(d+). (13)

Delta of the Call Option

7

 Call Option price

A

B

Slope = 

Stock price S

S
P





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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Example (Static Delta-neutral Hedging for An Asset Portfolio)

Suppose that, a $0.1 increase in price of stock leads to asset portfolio decreasing in value by
$100, then, delta of this asset is −100/0.1 = −1000.

Delta hedging: this asset portfolio could be hedged against short-term changes in price of
stock by buying 1000 unites of stock.

Portfolio delta neutral: P(S) + 1000× S, in general,

P(S)− ∆S × S.

Assumption: delta hedging does not influence stock price.
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§2 Risk, Hedging and Cost
Linear Products

Linear Product: its value at any given time is linearly dependent on the value of
underlying market variable.

e.g. forward contracts

both small and large movements of
underlying values can be well hedged

a simple (static) hedge & forget strategy
(i.e. delta neutral P(S)− ∆× S) can be
used: once it has been set up, never needs
to be changed
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§2 Risk, Hedging and Cost
Nonlinear Products

Nonlinear product: relationship between the value of product and the underlying
asset price at any given time is nonlinear.

e.g. options.

Delta neutral only protects against small
movements in the price of the underlying
asset.

It requires the hedge to be
consistently/frequently rebalanced to
preserve delta neutrality (i.e. dynamic
hedging).
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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Example (Dynamic Delta-neutral Hedging for A Short Call in Discrete Time)

A trader at a bank has sold (shorted) for $300,000 a European call on 100,000 shares of a
non-dividend paying stock.

Parameter setting: t = 0, S0 = 49, K = 50, r = 5%, σ = 20%, T = 20 weeks.

Theoretical value of this option under Black-Scholes model is $240,000.

So, option has been sold $60,000 more than theoretical value.

How does the bank hedge its risk to lock in a $60,000 profit?
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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

There are 100,000 units of options.

B-S value of one option is $2.40.

Initially, delta per option is 0.522.

Delta of the position is 52,200.

This means that 52,200 unites of shares must
purchased to create a delta neutral position.

But, if a week later, stock price falls by the end of the
first week to $48.12, delta falls to 0.458, then,
52,200− 45,800 = 6,400 unites of shares must be
sold to maintain delta neutrality.

To preserve delta neutrality, hedge has to be adjusted
periodically (rebalanced weekly).

Tables 7.2, 7.3 provide examples of how weekly delta
hedging might work for this option.
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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Cost

=5263.3-100*50

= $263.3k

vs B-S’=$240k 

Simulated path

2557.8

-308.0

+2.5

=$2252.3k

Option 

exercised
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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Cost = $256.6k

vs B-S’=$240k 

Simulated path

Option 

not 

exercised
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§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Under BS model with no transaction cost, if the dynamic hedging scheme
(Derman and Taleb, 2005) using underlying asset worked perfectly in continuous
time, the cost of hedging would, after discounting, be exactly equal to BS price
(here $240k ) for every simulated path of stock price.

The reason for the variation in the cost of delta hedging is that, it is rebalanced
only once a week.

As rebalancing takes place more frequently, the variation is reduced.

c©Shibo Bian (SUFE) Lecture: Financial Modelling 51 / 120



§2 Risk, Hedging and Cost
Option’s Delta, Hedging and Costs: Examples

Where does the cost of hedging come from?

The delta-hedging procedure in Tables 7.2, 7.3 in effect synthetically creates a
long option position to neutralize the trader’s short option position.

This hedging strategy tends to involve selling stock just after the price has gone
down and buying stock just after the price has gone up – a buy-high sell-low
scheme.

The theoretical cost of hedging $240k comes from the average difference between
the price paid for the stock and the price realized for it and cost of borrowing.
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§2 Risk, Hedging and Cost
Gamma

Gamma (Γ) is the rate of change of delta (∆) with respect to underlying price, i.e.

Γ :=
∂∆
∂S

=
∂2P
∂S2 . (14)

In B-S model, for European call option on a non-dividend stock,

Γ =
∂2CB−S(S,K , r , σ; t ,T )

∂S2 =
Φ′(d+)

σS
√

T − t
. (15)

If gamma is small, delta changes slowly, and adjustments to keep a portfolio delta
neutral need to be made only relatively infrequently.

If gamma is large, delta is highly sensitive to the price of underlying.

It is very risky to leave a delta-neutral portfolio (of nonlinear with big Gamma)
unchanged for any length of time.
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§2 Risk, Hedging and Cost
Delta Hedging Errors Caused By Curvature

When stock price moves from S to S′, delta hedging assumes that option price
moves from C to C ′, when in fact it moves from C to C ′′.

The difference between C ′ and C ′′ leads to a hedging error.

This error depends on the curvature of
relationship between option price and
underlying price.

Gamma measures this curvature.

Gamma is greatest for options where
the stock price is close to strike price.
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§2 Risk, Hedging and Cost
Gamma

How does it change when approaching to maturity?
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§2 Risk, Hedging and Cost
Vega

Vega (ν) is the rate of change of the value of of a derivative (or portfolio of
derivatives) with respect to volatility, i.e.

ν :=
∂P
∂σ

. (16)

In B-S model, for a European call option on a non-dividend stock,

ν =
∂CB−S(S,K , r , σ; t ,T )

∂σ
= SΦ′(d+)

√
T − t . (17)

This is different from the other Greeks, since it is a derivative with respect to a
parameter rather than a variable.
The volatility of a market variable measures our uncertainty about the future value
of the variable.
In option valuation models, volatilities are often assumed to be constant; in
practice, volatilities change through time.
Spot positions and forwards do not depend on the volatility of asset prices; but
options and more complicated derivatives (e.g. variance swap) do.
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§2 Risk, Hedging and Cost
Vega

Like Gamma, Vega tends to be greatest for options at the strike price K .
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§2 Risk, Hedging and Cost
Example: Delta, Gamma & Vega Neutral

∆ can be changed by taking a position in the underlying.

To adjust Γ & ν, it is necessary to additionally take a position in an option or other
derivatives.

Example (Delta, Gamma & Vega Neutral)

Consider one delta-neutral portfolio and two types of options:

Delta Gamma Vega
Portfolio 0 −5,000 −8,000
Option 1 0.6 0.5 2.0
Option 2 0.5 0.8 1.2

Gamma & Vega neutralisation: buy w1 units of Option 1 and w2 units of Option 2, then,

−5000 + 0.5w1 + 0.8w2 = 0,

−8000 + 2.0w1 + 1.2w2 = 0,

with the solution w1 = 400, w2 = 6000.

Delta neutralisation: sell 400× 0.6 + 6,000× 0.5 = 3,240 units of underlying assets.
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§2 Risk, Hedging and Cost
Theta

Theta (Θ) (time decay) of a derivative (or portfolio of derivatives) is the rate of
change of value with respect to passage of time, i.e.

Θ :=
∂P
∂t

. (18)

In B-S model, for a European call option on a non-dividend stock,

Θ =
∂CB−S(S,K , r , σ; t ,T )

∂t
= − σSΦ′(d+)

2
√

T − t
− rKe−r (T−t)Φ(d−).

Theta of a call or put is usually negative.
If time passes with the price of the underlying asset and all other variables remaining
the same, the value of the option declines.

Theta is not the same type of Greek letter as delta.
There is uncertainty about a future asset price, but there is no uncertainty about the
passage of time.
It makes sense to hedge against changes in the price of an underlying asset, but it
does not make any sense to hedge against the effect of the passage of time on an
option portfolio.

c©Shibo Bian (SUFE) Lecture: Financial Modelling 59 / 120



§2 Risk, Hedging and Cost
Theta
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§2 Risk, Hedging and Cost
Rho

Rho (ρ) is the partial derivative with respect to a parallel shift in all interest rates,
i.e.

ρ :=
∂P
∂r

. (19)

In B-S model, for a European call option on a non-dividend stock,

ρ =
∂CB−S(S,K , r , σ; t ,T )

∂r
= K (T − t)e−r (T−t)Φ(d−). (20)
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§2 Risk, Hedging and Cost
Taylor Series Expansion

How the change in portfolio value in a short time period depending on Greek letters?

∆P =
∂P
∂S

∆S +
∂P
∂t

∆t +
1
2

∂2P
∂S2 (∆S)2+

1
2

∂2P
∂t2 (∆t)2 +

∂2P
∂S∂t

(∆S∆t) + . . ., (21)

where
∆P := P(S + ∆S, t + ∆t)− P(S, t), (22)

the volatility of underlying asset and interest rates are assumed to be constant;

terms of higher order than ∆t are ignored.
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§2 Risk, Hedging and Cost
Interpretation of Gamma

For a delta-neutral portfolio,

∆P ≈ Θ∆t +
1
2

Γ(∆S)2. (23)

Parabolic
Curve

(a) slightly positive gamma
(b) large positive gamma

(c) slightly negative gamma
(d) large negative gamma
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§2 Risk, Hedging and Cost
Taylor Series Expansion when Volatility is Uncertain

When the volatility of underlying asset is uncertain,

∆P =
∂P
∂S

∆S +
∂P
∂σ

∆σ +
∂P
∂t

∆t +
1
2

∂2P
∂S2 (∆S)2 +

1
2

∂2P
∂σ2 (∆σ)2 + . . . , (24)

where
∆P := P(S + ∆S, σ + ∆σ, t + ∆t)− P(S, σ, t), (25)

1st term is eliminated by delta hedging;

2nd term is eliminated by making the portfolio vega neutral;

3rd term is deterministic (non-stochastic);

4th term is eliminated by making the portfolio gamma neutral.

5th traders often define other "Greek letters" to correspond to higher order terms in
Taylor Series Expansion. For example, ∂2P

∂σ2 is sometimes referred to as "gamma of
vega".
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§2 Risk, Hedging and Cost
Relationship between Delta, Theta and Gamma in B-S Model

In B-S model, the price of a single derivative dependent on a non-dividend-paying
stock satisfies the B-S PDE

∂f
∂t

+ rS
∂f
∂S

+
1
2

σ2S2 ∂2f
∂S2 = rf . (26)

Then, the value of a portfolio of such derivatives also satisfies the PDE

∂P
∂t

+ rS
∂P
∂S

+
1
2

σ2S2 ∂2P
∂S2 = rP, (27)

Θ :=
∂P
∂t

, ∆ :=
∂P
∂S

, Γ :=
∂2P
∂S2 , (28)

Θ + rS∆ +
1
2

σ2S2Γ = rP. (29)

For a delta-neutral portfolio

Θ +
1
2

σ2S2Γ = rP. (30)
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§2 Risk, Hedging and Cost
Hedging in Practice

Traders usually ensure that their portfolios are delta-neutral at least once a day.

Whenever opportunity arises (by finding proper options or other nonlinear derivatives
that can be traded in the volume required at competitive prices), they improve gamma
and vega.

Maintaining delta neutrality for an individual option on an asset by trading the
asset daily would be very expensive.

As portfolio becomes larger, hedging as a whole becomes less expensive (by
large economies of scale).

Cost of daily rebalancing is covered by the profit on many different trades.
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§2 Risk, Hedging and Cost
Static Hedging and Static Options Replication

Dynamic hedging, in theory, requires hedging over the next infinitesimal time
interval; in practice, needs frequent trading and rebalancing, hence may incur
significant transaction costs.

Dynamic hedging in incomplete markets: minimum-variance criterion over hedging
error (Basak and Chabakauri, 2012).
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§2 Risk, Hedging and Cost
Static Hedging and Static Options Replication

Static hedging (Derman et al., 1995; Carr et al., 1998) is a one-time fixed
strategy created to hedge an existing option or position.

Once created, it is not adjusted at all, contrary to a dynamic hedge.

Static options replication involves approximately replicating an exotic option with
a static portfolio of vanilla options (e.g. standard options with different strikes and
maturities but fixed portfolio weights).

Once constructed, this portfolio will replicate the value of target option for a wide range
of stock prices and times before expiration, without requiring further weight adjustments
(i.e. static replication).

The exotic option is hedged by shorting this portfolio.

Static options replication is contrasted with dynamic options replication where we have
to trade continuously to match the option.

It minimizes dynamic hedging risk and costs.
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§2 Risk, Hedging and Cost
Static Options Replication
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§2 Risk, Hedging and Cost
Example: Static Hedging An Exotic Option with A Portfolio of Standard Options

The graph on the left shows the value of a one-year up-and-out call, struck at 100 with out-barrier at 120,
for all times to expiration and for market levels between 90 and 120.

The graph on the right shows the value of a replicating portfolio constructed from seven standard options,
struck either at 100 or 120, and expiring every two months over the one-year period.

The replicating portfolio value approximately matches the target option value over a large range of times
and stock prices, and has the same general behavior.

The more standard options you include in the replicating portfolio, the better the match.
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§2 Risk, Hedging and Cost
Theory: Static Hedging for Any Smooth Payoff by A Portfolio of European Options of All Strikes

If we assume that, markets exist trading for European options of all (i.e. continuum
from 0 to ∞) strikes, then, any smooth payoff function (i.e. twice continuously
differentiable) at maturity time T , f (ST ), with final future price ST , can be spanned
as (Carr and Madan, 2001b)

f (ST ) = f (κ) + f ′(κ)
��

ST − κ
�+ − �κ − ST

�+�
+

κZ
0

�
K − ST

�+f ′′(K )dK +

∞Z
κ

�
ST − K

�+f ′′(K )dK , ∀κ ≥ 0,

where
1 1th is payoff from a static position in f (κ) pure discount bonds, each paying $1 at T ;
2 2nd is payoff from long f ′(κ) calls struck at κ and short f ′(κ) puts also struck at κ;
3 3rd is payoff from a static position in long f ′′(K )dK puts at all strikes less than κ;
4 4th is payoff from a static position in f ′′(K )dK calls at all strikes greater than κ.

Note that,
�
ST − κ

�+ − �κ − ST
�+

= ST − κ.
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§2 Risk, Hedging and Cost
Theory: Static Hedging for Any Smooth Payoff by A Portfolio of European Options of All Strikes

In absence of arbitrage and frictionless market, i.e. applying risk-neutral valuation
to both sides, total cost of static hedging at time 0 for payoff f at time T is

V f
0(T ) = EQ

�
B0(T )f (ST )

�
= B0(T )f (κ) + f ′(κ)

�
C0(κ,T )− P0(κ,T )

�
+

κZ
0

P0(K ,T )f ′′(K )dK +

∞Z
κ

C0(K ,T )f ′′(K )dK ,

where
B0(T ) denote the present value at time 0 of risk-free bond paying $1 at maturity T ;
P0(K ,T ), C0(K ,T ) denote initial prices at time 0 of put and call struck at K with
maturity T , respectively.

No assumption was made regarding to the stochastic process governing the underlying

price!

This observation was first noted in Breeden and Litzenberger (1978) and Banz and Miller

(1978), and then established formally in Green and Jarrow (1987), Nachman (1988), Bakshi

and Madan (2000), Carr and Madan (2001a,b), Bakshi et al. (2003).
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§3 Model Extensions
Market Return Volatility v.s. Black-Scholes Volatility

Figure: Daily returns of the DJIA 01/1930 - 08/2006 (Left) v.s. 76.5 years of Brownian motion with identical
volatility (Right)
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§3 Model Extensions
Market Return Distribution v.s. Black-Scholes Distribution

Figure: Frequency distribution of (77 years from 1928 to 2005 of) SPX daily log returns (-22.9% return on
October 19, 1987) compared with the normal distribution (Left), and Q-Q plot of SPX daily log returns compared
with the normal distribution (Right)

Statistic test for normal distribution: e.g. Jarque-Bera (JB) test (Jarque and Bera,
1987).
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§3 Model Extensions
Imperfections of Black-Scholes Model: Empirical Evidences

From many empirical investigations (Kendall and Hill, 1953; Mandelbrot, 1963;
Cont, 2001), we find that,

1 Return Distribution: asymmetric leptokurtic features, i.e. return distribution is skewed
to left (i.e. negative skewness), and has a higher peak and two heavier tails than those
of normal distribution (Fama, 1965);

2 Jump Component: market portfolio contains jumps, e.g. Jarrow and Rosenfeld (1984),
Schwert (1990).

3 Market Price: implied volatility ’smile’ (before 1987’s Wall Street crash) or ’skew’ (post
1987’s Wall Street crash) in option markets (Bates, 2000).
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§3 Model Extensions
Imperfections of Black-Scholes Model: Volatility Surface

Volatility surface is the surface formed by mapping implied volatility as a function
of strike and time-to-maturity (Cont et al., 2002).

Figure: A snapshot of volatility surface for Eurostoxx 50 index on 28 Nov 2007
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§3 Model Extensions
Imperfections of Black-Scholes Model

These evidences show that, Black-Scholes’ geometric Brownian motion with drift
is not an accurate model for underlying asset prices in real financial market.

The core problem: how can we develop pricing models to insure that all
instruments are consistently priced with respect to each other throughout the time
– that is, to satisfy the golden rule of absence of arbitrage?

Every option pricing model basically has to make three basic assumptions:

1 underlying price process (i.e. distributional assumption),

2 interest rate process,

3 market price of factor risks.
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§3 Model Extensions
Model Extensions for the Underlying Price Processes: Volatility Models

Volatility plays a central role in option pricing.

What are option prices, if instantaneous volatility σ in BS model becomes
time-deterministic only and not stochastic (Merton, 1973), say, σ(t) > 0?
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§3 Model Extensions
Model Extensions for the Underlying Price Processes: Local Volatility (LV) Models

Local (deterministic) volatility models7: instantaneous volatility is merely a
deterministic function of time and underlying spot price, i.e. σ(St , t), e.g. constant
elasticity of variance (CEV) model of Cox (1975), Dupire (1994), Derman and
Kani (1994), Rubinstein (1985), Dumas et al. (1998).

7Its discrete-time version is the implied binomial tree model (Rubinstein, 1994) ; whereas the
discrete-time version of B-S model is binomial tree model (Cox et al., 1979).
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§3 Model Extensions
Model Extensions for the Underlying Price Processes: Stochastic Volatility (SV) Models

Stochastic volatility (SV) models: instantaneous volatility has a randomness of
its own, e.g. Johnson and Shanno (1987), GBM (Hull and White, 1987), Scott
(1987), Wiggins (1987), Stein and Stein (1991); CIR (Heston, 1993)8; GARCH of
Duan (1995), Heston and Nandi (2000), Christoffersen et al. (2013) and
Ornthanalai (2014); regime switching of Bollen et al. (2000),Britten-Jones and
Neuberger (2000) and Duan et al. (2002); SABR (stochastic alpha, beta, rho)
(Hagan et al., 2002), ambiguous volatility (Epstein and Ji, 2013).

8The most popular SV model for pricing equity options, see details of implementation in Rouah
(2013); its discretised-time version is the affine GARCH(1,1) SV model (Nelson and Foster, 1994;
Heston and Nandi, 2000).
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§3 Model Extensions
Model Extensions for the Underlying Price Processes: Jump-diffusion Models

Poisson jump-diffusion models: non-systematic (i.e. diversifiable) jumps of
Merton (1976), Kou (2002), finite number of random jump sizes of Jones (1984),
Ball and Torous (1985), Ahn and Thompson (1988), Back (1991), systematic
jumps of Ahn (1992), Bates (1996), Scott (1997), Jorion (1988), local volatility with
Poisson-jump models of Andersen and Andreasen (2000), Eraker et al. (2003).
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§3 Model Extensions
Empirical Performance of Option Pricing Models

Standard measures for the performance of alterative option pricing models:

(1) internal consistency of implied parameters/volatility with relevant time series data;

(2) out-of-sample pricing;

(3) hedging.

Bakshi et al. (1997) found that,

incorporating stochastic volatility and jumps is important for (1) and (2),

however, modeling stochastic volatility alone yields the best performance for (3).
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§3 Model Extensions
Methodologies for Model Extensions

1 Monte Carlo simulation approach (Glasserman, 2003):
(1) discretization simulation: Boyle (1977), Duffie and Glynn (1995), Boyle et al. (1997),

Longstaff and Schwartz (2001), Rogers (2002);
(2) exact simulation: Broadie and Kaya (2006), Andersen (2008);
(3) importance sampling (via change of measure): Asmussen and Glynn (2007).

2 Tree (or lattice) approach: binomial tree of Cox et al. (1979), trinomial tree.

3 PDE approach: Jarrow (1999), Carr and Cousot (2011).

4 Characteristic function / Fourier transform approach: Heston (1993), Fast Fourier
transform (FFT) of Carr and Madan (1999), Bakshi and Madan (2000), Duffie et al. (2000),
Lee (2004).

5 Other transform methods: Laplace transform of Kou et al. (2005); Esscher transform of
Gerber and Shiu (1994).

6 Time change approach: Mandelbrot and Taylor (1967), Clark (1973), Monroe (1978), Ané
and Geman (2000), Geman et al. (2001), Carr et al. (2003), Carr and Wu (2004), Huang and
Wu (2004), Geman (2005), Li and Linetsky (2014).

7 Expansion methods: Spectral methods (Linetsky, 2007), Kristensen and Mele (2011),
Hermite polynomial expansion (Xiu, 2014), Edgeworth expansion (Heston and Rossi, 2017).
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§3 Model Extensions
Recommended Books on Advanced Models

1 The Volatility Surface: A Practitioner’s Guide (Gatheral, 2006), by Jim Gatheral,
former (MD) head of Equity Quantitative Analytics group at Merrill Lynch

2 The Volatility Smile (Derman and Miller, 2016)

3 Option Valuation under Stochastic Volatility (I&II): With Mathematica Code (Lewis,
2000, 2016)

4 Financial Modelling with Jump Processes (Cont and Tankov, 2004)

5 Lévy Processes in Finance: Pricing Financial Derivatives (Schoutens, 2003)

6 Exotic option pricing and advanced Lévy models (Kyprianou et al., 2006)

7 Stochastic Volatility: Selected Readings (Shephard, 2005)
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§4 Pricing Barrier Options
Exotic Options and Barrier Options

Exotic options are usually traded in OTC market, much less liquid, smaller trading
volume than the plain vanilla derivatives in exchanges.

However, they are important to a bank, as profit tends to be much higher than
plain vanilla.

Barrier option is a type of path-dependent options that come into existence or
disappear when the price of underlying asset reaches a certain barrier (e.g.
knock-out or knock-in option).

Once the underlying process reaches those barriers, the values of those barrier
options will be zero forever (knock out), or be effective (knock in) .

Usually analytical formulas for the prices of complex barrier options don’t exist in
general, then, we need numerical methods.

Why barrier options? cheaper than a standard option; provides a payoff
distribution that better matches a hedger’s risk or a speculator’s veiw.
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§4 Pricing Barrier Options
Pricing Continuously-monitored Knock-out Call Barrier Option

Knock-out call option is a type of barrier option that the right to exercise the
underlying European call option is lost (or knocked out) and the option becomes
worthless, if the predetermined price barrier is crossed by the option’s underlying
stock before expiration.

Consider a knock-out call option (or up-and-out call – U&O call) which will expire
on T with upper barrier B > S0 where S0 > 0 is initial stock price. Its payoff at
maturity T is

payoff(T ) = (ST − K )+1{MT < B} =
¨

(ST − K )+, if MT < B,
0, if MT ≥ B,

(31)

where
MT := max

0≤u≤T
{Su} . (32)

We assume strick price K < B; otherwise, the option must knock out in order to be
in the money and hence could only have zero payoff.
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§4 Pricing Barrier Options
Pricing Continuously-monitored Knock-out Call Barrier Option

Assume underlying stock price {St}0≤t≤T follows a geometric Brownian motion9,
i.e.

dSt
St

= rdt + σdWt , (33)

and the barrier is continuously-monitored.

What is present value of this knock-out call option?

CU&O(S,K , r , σ;0,T ) = e−rT EQ
�
(ST − K )+1{MT < B}� , S0 = S. (34)

9Brownian motion is the scaling limit of random walk (Fama, 1995) in dimension one.
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§4 Pricing Barrier Options
Pricing Continuously-monitored Knock-out Call Barrier Option

The present value of this knock-out call option has analytic formula (Merton, 1973;
Rubinstein and Reiner, 1991)10:

CU&O(S,K , r , σ;0,T ) = SI1 − K I2 − SI3 + K I4,

where

I1 := Φ
�

δ+

�
T ,

S
K

��
−Φ

�
δ+

�
T ,

S
B

��
,

I2 := erT
h

Φ
�

δ−
�

T ,
S
K

��
−Φ

�
δ−
�

T ,
S
B

��i
,

I3 :=
�

S
B

�− 2r
σ2 −1 �

Φ

�
δ+

�
T ,

B2

KS

��
−Φ

�
δ+

�
T ,

B
S

���
,

I4 := e−rT
�

S
B

�− 2r
σ2 +1 �

Φ

�
δ−

�
T ,

B2

KS

��
−Φ

�
δ−
�

T ,
B
S

���
,

δ±(T ,u) :=
1

σ
√

T

h
ln u +

�
r ± 1

2
σ2
�

T
i
.

Extensions: Kunitomo and Ikeda (1992), Carr (1995), Boyle and Tian (1998), Davydov and
Linetsky (2001), Kou and Wang (2003, 2004).

10See also Shreve (2004).
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§4 Pricing Barrier Options
Pricing Discretely-monitored Barrier Options

In practice, many (if not most) contracts with barrier provisions specify discrete
monitoring instants, typically daily closings.
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§4 Pricing Barrier Options
Numerical Example: Pricing A Barrier Option on FX Rate by Monte Carlo Simulation

The option is an exotic partial barrier option written on an FX rate. The current value of
underlying FX rate S0 = 1.5 (i.e. 1.5 units of domestic buys 1 unit of foreign). It matures in
one year, i.e. T = 1.

The option knocks out, if the FX rate
1 is greater than an upper level U in the period between between 1 month’s time and 6

month’s time; or,
2 is less than a lower level L in the period between 8th month and 11th month; or,
3 lies outside the interval [1.3,1.8] in the final month up to the end of year.

If it has not been knocked out at the end of year, the owner has the option to buy 1 unit of
foreign for X units of domestic, say X = 1.4, then, the payoff is max{0,ST − X}.
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§4 Pricing Barrier Options
Numerical Example: Pricing A Barrier Option on FX Rate by Monte Carlo Simulation

We assume that, FX rate follows a geometric Brownian motion

dSt = µSt dt + σSt dWt , (35)

where under risk-neutrality µ = rf − r = 0.03 and σ = 0.12.

To simulate path, we divide the time period [0,T ] into N small intervals of length
∆t = T /N, and discretize the SDE above by Euler approximation

St+∆t − St = µSt ∆t + σSt
√

∆tZt , Zt ∼ N (0,1). (36)

The algorithm for pricing this barrier option by Monte Carlo simulation is as
described as follows:

1 Initialize S0;
2 Take Si∆t as known, calculate S(i+1)∆t using equation the discretized SDE as above;
3 If Si+1 hits any barrier, then set payoff to be 0 and stop iteration, otherwise, set payoff

at time T to max{0,ST − X};
4 Repeat the above steps for M times and get M payoffs;
5 Calculate the average of M payoffs and discount at rate µ;
6 Calculate the standard deviation of M payoffs.
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§4 Pricing Barrier Options
Numerical Example: Pricing A Barrier Option on FX Rate by Monte Carlo Simulation

Fig.(Left): all sample paths “survive” (i.e. none of them touches barrier before maturity).

Fig.(Right): some paths touch the barrier before maturity so that payoffs of these paths
become zero; if we let τ∗ denote the first time the path hits barrier, then {St}τ∗<t≤T ≡ 0.

The accuracy of price estimated by simulations depends on both number of trials M and
number of discretization-time steps N. The optimum of efficiency for Euler approximation
algorithm is when N = α

√
M (Duffie and Glynn, 1995).
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§4 Pricing Barrier Options
Numerical Example: Pricing A Barrier Option on FX Rate by Monte Carlo Simulation

We take time steps N = 1,000, number of sample paths M = 10,000,
S0 = 1.5,n = 1,m = 1,U = 1.71,L = 1.29, µ = 0.03, σ = 0.12,X = 1.4, the following table
lists the result by running code for 10 times:

By averaging the mean values above, we get the estimated option price 0.08722.

The standard errors tend to be 0 as N → ∞, so this method is adoptable.
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§5 Model-free Option Pricing
Trading Strategies Using European Options

Straddle: involves one call and one put with the same strike price and expiration
date

Calendar spread: combination of options with the same strike price but different
expiration dates

Butterfly spread: involves three options of the same type with different strike
prices

 

1 1j j jK K K− +< <

0 
underlying

1 

0 

payoff 

 Figure: Approximation for Arrow-Debreu (Arrow and Debreu, 1954) security price π(Kj ;T )
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§5 Model-free Option Pricing
Model-free Implied Risk-neutral Distribution from Market Option Prices

Forward/future prices only tell about the risk-neutral expectation of the underlying
price, as, in general,

Ft = EQ[ST | St ],

see Meese and Rogoff (1983), Shiller et al. (1983), Fama (1984b), Fama (1984a),
Mankiw et al. (1984), Fama and Bliss (1987), Hardouvelis (1988).

The "model-free" implied risk-neutral probability density function (RND) of the
underlying price at the maturity is the second derivative of the market price of
European call with respect to the strike price (Breeden and Litzenberger, 1978),
see Banz and Miller (1978), Jackwerth and Rubinstein (1996), Aït-Sahalia and Lo
(1998), Jackwerth (1999, 2000).
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§5 Model-free Option Pricing
Model-free Implied Risk-neutral Distribution from Market Option Prices (Jackwerth, 2004)

Option-Implied Risk-Neutral Distributions and Risk Aversion

30 ©2004, The Research Foundation of AIMR™

Rubinstein (1996) is an early example for obtaining such tail probabilities.
Alas, two concerns severely limit the applicability of the method. For one, the
risk-aversion adjustment will be highest for large market down moves; thus,
the risk-neutral probabilities will be much higher than actual probabilities.
Also, because fewer option prices are observed with very low strike prices, all
methods will allocate only the correct cumulative probability to the tail but will
distribute this probability arbitrarily. Thus, we cannot rely on the point
estimates below the lowest observed strike price.

Figure 5. Risk-Neutral Implied Distributions from Options on Four 
International Indexes: Fast and Stable Method

Notes: Returns reported as 1 plus the rate of return. 
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§5 Model-free Option Pricing
Model-free Implied Risk-neutral Distribution from Market Option Prices: Applications

Forward-looking analysis for monetary policy of central banks: Malz (1996, 1997),
Bahra (1997), Campa et al. (1997), Söderlind and Svensson (1997), Kitsul and
Wright (2013), David and Veronesi (2014).

Event study: Gemmill (1992), Melick and Thomas (1997), Jondeau and Rockinger
(2000), Coutant et al. (2001), Galati et al. (2005), Beber and Brandt (2006), Fatum
and Hutchison (2006).

Risk measurement/management: Chang et al. (2012), Buss and Vilkov (2012),
Duan and Zhang (2014).

Portfolio selection/optimisation: DeMiguel et al. (2013), Kempf et al. (2015).
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§5 Model-free Option Pricing
Model-free Implied Risk-neutral Processes from Market Option Prices

Implied risk-neutral moments of the underlying: Carr and Madan (2001b), Bakshi
et al. (2003).

Implied risk-neutral underlying price processes/dynamics: Britten-Jones and
Neuberger (2000)11 Jiang and Tian (2005), Carr and Wu (2009), Bollerslev et al.
(2009).

11Britten-Jones and Neuberger (2000) find that, even initially given a continuum collection of both
strikes and maturities of European call/put options, the implied underlying price process is not
unique, hence the consistent prices of other associated exotic derivatives are not unique as well!
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§6 VIX
VIX: Financial Innovation: A New Tradable Asset Class

Is volatility tradable (Neuberger, 1990)?

In 1993, CBOE introduced volatility index (old) VIX – the average of B-S implied
volatilities from 30-calendar-day ATM S&P 100 index (OEX) options12 – the
benchmark index to measure the aggregate volatility of US equity market.

VIX is also known as investor’s "Fear Index" (Whaley, 2000).

VIX (new) redefined in 200313 is a model-free measure of market’s expected
volatility conveyed by all available OTM S&P 500 index (SPX) options over the
next 30-calendar-day period.

12Academics and practitioners often regard ATM B-S implied volatility as an approximate forecast
for realized volatility, based on empirical evidences by, e.g. Latane and Rendleman (1976), Chiras
and Manaster (1978), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Christensen
and Prabhala (1998).

13Ticker for old VIX is switched to VXO, see their key differences in Carr and Wu (2006). New
definition of VIX is based on the finding of Carr and Madan (2001b) that a variance swap in theory
can be replicated by a static hedging in a continuum of European options and a dynamic hedging in
the underlying.
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§6 VIX
Definition of VIX Spot

CBOE’s VIX (CBOE, 2009) at time t ,VIXt , is defined via VIX squared

VIXt
2 :=

"
2
τ

X
i

erτ Ot (Ki ,T )

K 2
i

∆Ki −
1
τ

�
Ft (T )

K0
− 1

�2
#
× 1002,

where
τ := 30/365 (i.e. 30 calendar days);
r is time-t risk-free rate with time-to-maturity τ;
T := t + τ is common expiry date for all options;
Ft (T ) is time-t 30-day forward SPX derived from index option prices via put-call parity,
i.e. Ft (T ) = erτ [Ct (K ,T )− Pt (K ,T )] + K ;
K0 is the first strike below forward SPX level Ft (T );
Ki is strike price of i th OTM option Ot (Ki ,T ) written on SPX: a call Ct (Ki ,T ) if Ki > K0

and a put Pt (Ki ,T ) if Ki < K0; both put and call if Ki = K0;
Ot (Ki ,T ) is time-t mid-quote price of each option at strike Ki ;
∆Ki is interval between two strikes – half the difference between strike on either side of
Ki , i.e. ∆Ki := (Ki+1 − Ki−1)/2.

VIX2
t is a linear portfolio of particularly selected options.
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§6 VIX
VIX Spot v.s. Neuberger’s Log Contract

Without specifying the dynamics of underlying SPX index process St (i.e.
model-free), VIX2

t is exactly the discretisation of risk-neutral expectation of a log
contract (Neuberger, 1994) 14 price at time t (Gatheral, 2006), i.e.

VIX2
t → −2

τ
EQ

�
ln
�

ST
F

� ���� Ft

�
× 1002, ∀ ∆Ki → 0,

where
F := Ft (T ) = EQ[ST | Ft ] = erτSt .

14Log contract was first introduced by Neuberger (1994) for hedging volatility, and laid the
theoretical foundation for pricing and trading volatility derivatives later in practice.
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§6 VIX
VIX Spot: Volatility Measure

VIX is a measure of volatility.

Typical feature of volatility: stochastic, mean-reverting and cluttering (i.e. large
moves follow large moves and small moves follow small moves).

c©Shibo Bian (SUFE) Lecture: Financial Modelling 102 / 120



§6 VIX
Strong Negative Correlation between VIX Spot and Other Indices
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§6 VIX
VIX Derivatives for Risk Management

Volatility becomes a tradable asset class: VIX futures, Euro-type VIX options were
launched in 2004, 2006, respectively; they are nowadays among the most actively
traded contracts at CBOE, as they are designed deliver pure volatility exposure
alone in single and efficient package.

They provide "catastrophe hedging" tools for stock portfolios, due to negative
correlation between VIX and SPX; they could also be used as a hedging vehicle
within fixed income, given high correlation between credit spreads and volatility
(Carr and Lee, 2009).
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