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§1 Default Risk
Credit Risk

Credit risk arises from the possibility that borrowers, bond issuers, and
counterparties in transactions may default.

It exists in commercial banking (e.g. credit cards, loans), investment banking (e.g.
corporate bonds, credit derivatives), sovereign (e.g. Argentina, Russian, Greece).
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§1 Default Risk
Modelling Methodologies

Regulators require banks to keep capital for credit risk.

Under Basel II, banks can, with approval from bank regulators, develop their own
models to estimate default probabilities for determining the amount of capital they
are required to keep.

This leads banks to search for various approaches of estimating default
probabilities:

Use accounting data (e.g. Altman’s Z-score);

Use historical default data (e.g. from Moody’s);

Use bond prices from the market;

Use Credit Default Swap (CDS) spreads from the market;

Use equity prices from the market (e.g. Merton’s structure model).
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§2 Accounting-Based Credit Risk Modelling
Altman’s Z-score for the Publicly-listed Firms

Altman’s Z-score model (Altman, 1968) based on discriminant analysis predicts
defaults of publicly-traded manufacturing companies (e.g. Toyota, Volkswagen,
Samsung Electronics) within 2 years from 5 firm-specific accounting ratios:

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 0.999X5, (1)

where

X1 = Working Capital / Total Assets (measuring liquid assets relative to the size of
company), Working Capital = Current Assets – Current Liabilities;

X2 = Retained Earnings / Total Assets (measuring cumulative profitability over time that
reflects earning power and firm’s age);

X3 = Earnings Before Interest and Taxes (EBIT) / Total Assets (measuring productivity
and operating efficiency of the firm’s assets, abstracting from any tax or leveraging
factors);

X4 = Market Value of Equity / Book Value of Liabilities (measuring how far firm’s assets
can decline before the company becomes insolvent);

X5 = Sales / Total Assets (measuring ability of firm’s assets to generate sales).
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§2 Accounting-Based Credit Risk Modelling
Altman’s Z-score for the Publicly-listed Firms

Prediction – the greater a firm’s bankruptcy potential within 2 years, the lower its
overall index Z-score (discriminant score):

If Z > 3.0, safe – default is unlikely;

If 2.7 < Z < 3.0, we should be on alert;

If 1.8 < Z < 2.7, there is a moderate chance of default;

If Z < 1.8, financial distress – there is a high chance of default.
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§2 Accounting-Based Credit Risk Modelling
Altman’s Z-score for the Privately-held: Discriminant Analysis

Z-score model predicts defaults of privately-held firms (e.g. Cargill, PWC, Ernst &
Young) from 5 accounting ratios:

Z = 0.717X1 + 0.847X2 + 3.107X3 + 0.420X4 + 0.998X5, (2)

where
X1 = (Current Assets – Current Liabilities) / Total Assets;

X2 = Retained Earnings / Total Assets;

X3 = Earnings Before Interest and Taxes (EBIT) / Total Assets;

X4 = Book Value of Equity / Total Liabilities;

X5 = Sales / Total Assets.

Prediction:
If Z > 2.9, safe – default is unlikely;

If Z < 1.23, financial distress – there is a high chance of default.
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§2 Accounting-Based Credit Risk Modelling
Altman’s Z-score Calculator
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§3 Intensity-Based Credit Risk Modelling
Credit Ratings

Credit ratings measure the creditworthiness of (corporate or sovereign) debt
instruments (e.g. bonds, CDSs, CDO tranches).

They are widely used by financial institutions and regulators for trading, pricing and risk
management.

They change relatively infrequently for rating stability;

They change only when there is reason to believe that a long-term change in the
company’s creditworthiness has taken place.

Three major global rating agencies: Moody’s, Standard&Poor, Fitch Rating.
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§3 Intensity-Based Credit Risk Modelling
Credit Ratings

Figure: Notation Systems of Credit Ratings
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§3 Intensity-Based Credit Risk Modelling
Subdivisions of Credit Ratings for Finer Rating Measure
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§3 Intensity-Based Credit Risk Modelling
S&P Credit Ratings on Sovereign Debt (Sep. 2010)
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§3 Intensity-Based Credit Risk Modelling
Discrete-time Case: Estimating Default Probabilities from Historical Default Data

Historical default data provided by rating agencies can be used to estimate the
probability of default (PD).

Historical Default Data
 Historical default data provided by rating agencies can 

be used to estimate the probability

 It shows the probability of default for companies starting with a specified 
credit rating, e.g. a company with an initial credit rating of Baa has a 
probability of 0.181% of defaulting by the end of the 1st year, 0.510% by 
the end of the 2nd year, and so on

 The probability of a bond defaulting during a particular year can be 
calculated, e.g. the probability that a bond initially rated Baa will default 
during the 2nd year of its life is 0.510%−0.181%=0.329% (unconditional 
annual default probability as seem at time 0)

8

It shows PD for companies starting with a specified credit rating, e.g. a company with
an initial credit rating of Baa has a probability of 0.181% of defaulting by the end of 1st

year, 0.510% by the end of 2nd year, and so on.

PD during a particular year can be calculated, e.g. probability that a bond initially rated
Baa will default during 2nd year is 0.510%− 0.181% = 0.329% (unconditional annual
default probability as seem at time 0).
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§3 Intensity-Based Credit Risk Modelling
Discrete-time Case: Average Cumulative Default Rates (1970-2010, Moody’s)

Figure: Average Cumulative Default Rates (1970-2010, Moody’s)

Shibo Bian (SUFE) Lecture: Financial Modelling 14 / 104



§3 Intensity-Based Credit Risk Modelling
Discrete-time Case: Average Annual Default Rates (1970-2010, Moody’s)

Figure: Average Annual Default Rates (1970-2010, Moody’s)
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§3 Intensity-Based Credit Risk Modelling
Discrete-time Case: Unconditional/Conditional Default Probabilities

Unconditional/Conditional Default 
Probabilities

 The unconditional default probability is the probability 
of default as seen at time 0
- e.g. the probability of a Caa bond defaulting during 
3rd year is 39.709%−30.204%=9.505%

 The probability that the Caa-rated bond will survive 
until the end of 2nd year is 100%−30.204%=69.796%
- the probability of default during 3rd year conditional 
on no earlier default is 9.505%/69.796% =13.62%

12

The unconditional default probability is PD as seen at time 0.
e.g. probability of Caa bond defaulting during 3rd year is
39.709%− 30.204% = 9.505%.

Probability that the Caa-rated bond will survive until the end of 2nd year is
1− 30.204% = 69.796%.

PD during 3rd year conditional on no earlier default is 9.505%/69.796% = 13.62%.
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§3 Intensity-Based Credit Risk Modelling
Continuous-time Model: Default Intensity/Hazard Rate

Default intensity (or hazard rate1) is PD over a short period given no earlier
default, measuring instantaneous intensity of default (or bankruptcy, credit) events.

Denote λ(t) as the default intensity at time t , then, PD between times t and t + ∆t ,
as seen at time t , conditional on no earlier default within time [0, t ], is
approximately λ(t)∆t , i.e.

λ(t) := lim
∆t→0

Pr
�

t < τ∗ ≤ t + ∆t | τ∗ ≥ t
	

∆t
, t ≥ 0, (3)

where τ∗ is a random default time (totally unpredictable, complete surprise:
stopping time).

We have the approximation

Pr
�

t ≤ τ∗ ≤ t + ∆t | τ∗ ≥ t
	 ≈ λt ∆t . (4)

1Hazard rate is more general than default intensity. When the information filtration is only about
default time, then, they are equivalent (Duffie, 2011, p.14).
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§3 Intensity-Based Credit Risk Modelling
Continuous-time Model: Default Intensity/Hazard Rate

The cumulative survival probability by time t is given by

Pr{τ∗ > t} = e−
R t

0
λ(s)ds

. (5)

The cumulative default probability by time t is given by

Fτ∗ (t) := Pr{τ∗ ≤ t} = 1− e−
R t

0
λ(s)ds

. (6)

The default arrival is an inhomogeneous Poisson process of rate λt .
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§3 Intensity-Based Credit Risk Modelling
Continuous-time Model: Default Intensity/Hazard Rate

estimated probability density qsðX it; sÞ (the partial derivative of qð � Þ with respect to time
horizon s) of the default time,16 and the estimated default hazard rate

HðX it; sÞ ¼
qsðX it; sÞ

pðX it; sÞ
, (18)

where pðX it; sÞ is the estimated survival probability, from (2). The hazard rate HðX it; sÞ is
the mean rate of arrival of default at time tþ s, conditioning on the covariate vector X it at
time t, and conditioning as well on the event of survival up until time tþ s. We emphasize
that this default hazard rate at time horizon s conditions on survival to time s from both
default and from other forms of exit.17 If the intensity of default and the intensity of other
forms of exit are independent processes, then controlling for survivorship from other forms
of exit has no effect on the default hazard rate. In our case, the default intensity and other-
exit intensity are correlated since they depend on the same covariates, however the effect of
this correlation on the default hazard rates is small. In our illustrative calculations, we
account for the other-exit effects associated with merger and acquisition, viewing the other
forms of exit as less relevant in practical terms. Even a merger or acquisition need not
prevent the future default of a particular debt instrument (depending, for example, on
whether that debt instrument is paid down immediately, assumed by the new corporation,
or exchanged for a new form of debt issued by the new corporation), although of course an
acquisition rules out a future bankruptcy by the acquired firm itself.

We consider Xerox as an illustrative firm, and take January 1, 2001 as the conditioning
date t. The estimated term structure of Xerox’s default hazard rates as of that date is
shown in Fig. 3. The asymptotic one-standard-deviation error bands of the estimated
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Fig. 2. The total across firms of estimated default intensities (line), and the number of defaults in each year (bars),

1980–2004.

16This density is most easily calculated by differentiation through the expectation, as Eðe
�
R tþs

t
½lðuÞþaðuÞ� dulðtþ sÞ jX tÞ;

which we compute by Monte-Carlo simulation. We emphasize that this density is ‘‘improper’’ (integrates over all s to

less than one) because of nondefault exit events.
17The total hazard rate for all forms of exit is �psðX t; sÞ=pðX t; sÞ.

D. Duffie et al. / Journal of Financial Economics 83 (2007) 635–665 651

Figure: Total across firms of estimated default intensities (line), and the number of defaults in each year (bars),
1980–2004 (Duffie et al., 2007, p.651)
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§3 Intensity-Based Credit Risk Modelling
Continuous-time Model: Default Intensity/Hazard Rate v.s. Default Probability Density

The default probability density (Hull and White, 2000) is given by

fτ∗ (t) :=
d
dt

Fτ∗ (t) = λ(t)e−
R t

0
λ(s)ds

, (7)

which means fτ∗ (t)∆t is approximately the unconditional PD between times t and
t + ∆t as seen at time 0, i.e.

Pr
�

t ≤ τ∗ ≤ t + ∆t
	 ≈ fτ∗ (t)∆t ; (8)

and links to hazard rate via
λ(t) =

fτ∗ (t)
1− Fτ∗ (t)

. (9)
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§3 Intensity-Based Credit Risk Modelling
Continuous-time Model: Default Intensity/Hazard Rate v.s. Default Probability Density

Average hazard rate within time period [t ,T ] is defined by

λ[t ,T ] :=

R T
t λ(s)ds

T − t
, (10)

then,
Pr{τ∗ ≤ t} = 1− e−λ[0,t ]×t . (11)

For constant hazard rate, i.e. λ(t) ≡ λ, then,

Pr{τ∗ ≤ t} = 1− e−λt .
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§3 Intensity-Based Credit Risk Modelling
Jarrow and Turnbull (1995) Model: Default Arrival of Homogenous Poisson Process

Example (Jarrow-Turnbull Model)

Suppose that the hazard rate λ(t) is a constant 1.5% per year.

PD by the end of 1st year is 1− e−0.015×1 = 1.49%.

PD by the end of 2nd year is 1− e−0.015×2 = 2.96%.

PD by the end of 3rd , 4th , 5th years are similarly 4.40%, 5.82%, 7.23%.

Unconditional PD during 4th year is 5.82%− 4.40% = 1.42%.

PD in 4th year, conditional on no earlier default, is 1.42%/(1− 4.40%) = 1.49% ≈ 1.5%.
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§3 Intensity-Based Credit Risk Modelling
Annual Defaults of Moody’s-rated U.S. Firms, 1970–2008

Figure: The peak in 1970 represents a cluster of 24 railway defaults triggered by the collapse of Penn Central
Railway on June 21,1970. The fallout of the 1987 crash is indicated by the peak in the early 1990s. The burst of
the internet bubble caused many defaults during 2001-2002. From a trough in 2007, default rates increased
significantly in 2008. Source: Moody’s Default Risk Service.

Shibo Bian (SUFE) Lecture: Financial Modelling 23 / 104



§3 Intensity-Based Credit Risk Modelling
Annual Percentage Default Rate (%) for All Rated Companies, 1970-2010
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§3 Intensity-Based Credit Risk Modelling
Cox (1955, 1972) Model: Defaults Arrival as A Doubly Stochastic Poisson Process

Cox (1955, 1972) models, or doubly stochastic Poisson processes, are widely
used for modelling event arrivals and survival analysis.

They are based on conditional independence (doubly stochastic) assumption, i.e.,
default times follow independent Poisson processes given the intensities (Das
et al., 2007, p.98).

The cumulative survival probability by time t is

Pr{τ∗ > t} = E

�
e−
R t

0
λ(s)ds

�
, (12)

where the intensity λt is stochastic and independent of default.
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§3 Intensity-Based Credit Risk Modelling
Recovery Rate

The recovery rate of a bond is usually defined as the price of bond immediately
(30 days) after default as a percentage (averagely 40%) of its face value.

Some claims have priorities over other claims and are met more fully, which depends
on the bond holders’ seniority.
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§3 Intensity-Based Credit Risk Modelling
Modeling Recovery Rates

Recovery rate can be modelled by Beta distribution, X ∼ Beta(α, β) with PDF

fX (x ; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ [0,1], (13)

where shape parameters α, β > 0, and Γ is Gamma function, with mean and
variance

mx =
α

α + β
, (14)

vx =
mx (1−mx )

1 + α + β
. (15)
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§3 Intensity-Based Credit Risk Modelling
Recovery Rates & Default Rates

Recovery rates are significantly negatively correlated with default rates (Altman
et al., 2005).

A bad year for default rate is usually doubly bad, because it is accompanied by a low
recovery rate.

Moody’s best-fit estimate for 1982-2007 period is

Average Recovery Rate = 59.33− 3.06× Non-investment Grade Default Rate.

The correlation between the average recovery rate in a year and the non-investment
grade default rate is about 50%.

Jointly modelling for recovery rates and defaults rates based on shared covariates:
Chava et al. (2011).
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§3 Intensity-Based Credit Risk Modelling
Pricing Corporate (Defaultable) Bond

Present value (at time 0) of defaultable zero-coupon bond which pays $1 at
maturity T is

v(0,T ) = p(0,T )

�
R + (1−R)Pr{τ∗ > T}

�
,

where
p(0,T ) is present value of default-free zero-coupon bond which pays $1 at maturity T ;
R ∈ [0,1] is constant recovery rate (say, 40%) (which depends on seniority);
risk-free interest rate and default are assumed to be independent.

Risk premium to compensate investors for taking default risk is

p(0,T )− v(0,T ) = p(0,T )(1−R)Pr{τ∗ ≤ T}. (16)

If R = 0 (no money is recovered if company defaults within period of [0,T ]), then,

v(0,T ) = p(0,T )Pr{τ∗ > T}. (17)
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§3 Intensity-Based Credit Risk Modelling
Credit Default Swaps (CDS)

CDS was invented by economist Blythe Masters from JP Morgan in 1994.

CDS buyer acquires protection or insurance from the seller against a credit event
(i.e. default) by a particular company or country (i.e. reference entity).

Premium is known as credit default spread (i.e. CDS spread), which is paid for life
of contract or until default.

CDS is a kind of insurance against credit (default) risk.
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§3 Intensity-Based Credit Risk Modelling
CDS’ Global Market Size
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§3 Intensity-Based Credit Risk Modelling
Example of CDS Cash-flow Structure

CDS buyer A pays a premium (credit spread) of 90 bps per year on face value
N =$100 million to CDS seller B, for 5-year protection against default loss of
reference entity X.

If there is a default at time τ∗X , 0 < τ∗X < 5, CDS buyer A has the right to sell bonds
with a face value of $100 million issued by company X for $100 million to CDS
seller B.

CDS Cash-flow Structure

Default 
Protection
 Buyer, A

Default 
Protection 
Seller, B

90 bps per year

if there is a default by reference 
entity, payoff =100(1-R)

20

Recovery rate, R, is the ratio of bond value issued by reference entity X
immediately after default to face value of bond.
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§3 Intensity-Based Credit Risk Modelling
CDS Cash-flow Structure

Protection buyer purchased a CDS at
time t0 and makes regular premium
payments N × s0 at times
t1, t2, t3, t4 . . .

If reference entity suffers no credit
event, then, buyer continues paying
premiums until the end of contract at
time T = tn.

If reference entity suffered a credit
event, say, at τ∗X = t5 , then, protection
seller pays buyer for the loss, and
buyer would cease paying premiums
to seller.
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§3 Intensity-Based Credit Risk Modelling
Pricing CDS

From protection sellers’ point of view (ignoring counterparty risk):

Expected premium:

Premium Leg = EQ

"
nX

i=1

s0Ne−rti 1{ti < τ∗X }
#
, (18)

where s0 is CDS spread at today t = 0 when CDS contract is created.

Expected loss:

Loss Leg = EQ
�
(1−R)Ne−rτ∗X 1{τ∗X ≤ T}

�
. (19)

Today t = 0, set CDS’ PV = expected premium – expected loss =0, then,

s0 =
(1−R)

R T
0 e−ru fτ∗X (u)duPn

i=1 p(0, ti )Pr{τ∗X > ti}
, (20)

where fτ∗X (u) is the density function of default time τ∗X .
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§3 Intensity-Based Credit Risk Modelling
CDS Protection Buyers and Sellers

Figure: Estimated breakdown of CDS buyers (left) and sellers (right) of protection, Mar 2007 (Source: BoA)
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§3 Intensity-Based Credit Risk Modelling
CDS Spread – “Fear Gauge" of Credit Risk
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§3 Intensity-Based Credit Risk Modelling
CDS & Bond Yields

Credit spread is the premium paid by protection buyer to seller, i.e. extra rate of
interest per annum (quoted in basis points) required by investors for bearing credit
risk, e.g.

CDS spread;

Bond yield spread, the amount by which the yield on a corporate bond exceeds the
yield on a similar risk-free bond (e.g. US Treasury bond).

Example (Hedging & Arbitrage on Credit Risk)

A portfolio consists of a 5-year corporate bond yielding 7% per year and a long position in a
5-year CDS costing 200 bps (2%) per year, for the same reference entity.

It is approximately a "risk-free" bond earning 5% per year, which is the implied risk-free rate
in normal markets.

In normal markets, what are arbitrage opportunities when real risk-free rate is 4.5%? what if
it is 5.5%?
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§3 Intensity-Based Credit Risk Modelling
iBoxx Bond Spread Indices 2006-2008

Figure: Bond Spread Indices 2006-2008 from Markit
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§3 Intensity-Based Credit Risk Modelling
Default Intensity Implied from Credit Spreads

Credit spread can be considered roughly to be a market’s expected average loss
rate (loss per time unit).

Implied average risk-neutral default intensity over life of bond within time [0,T ] is
approximately (Hull et al., 2005)

λ[0,T ] =
s(T )

1−R
, (21)

where
s(T ) is (continuously compounding) credit yield spread over risk-free rate for a maturity
of T , i.e.

s(T ) = y(T )− r (T ); (22)

0 ≤ R < 1 is recovery rate;

average hazard rate within time period [t ,T ] is defined by

λ[t ,T ] :=

R T
t λ(s)ds

T − t
. (23)
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§3 Intensity-Based Credit Risk Modelling
Default Intensity Implied from Credit Spreads

If credit spreads are known for a number of different maturities, term structure of
hazard rate can be bootstrapped.

Example (Term Structure of Default Intensity Implied from CDS Spreads)

Suppose that CDS spread for 3-, 5-, and 10-year instruments is 50, 60, and 100 basis points, and
expected recovery rate is 60%.

Average hazard rate over 3 years is approximately λ̄[0,3] = 0.005/(1− 0.6) = 0.0125.

Average hazard rate over 5 years is approximately λ̄[0,5] = 0.006/(1− 0.6) = 0.015.

Average hazard rate over 10 years is approximately λ̄[0,10] = 0.01/(1− 0.6) = 0.025.

From this, we can estimate that the average hazard rate between year 3 and year 5 is
λ̄[3,5] = (5× 0.015− 3× 0.0125)/2 = 0.01875.

Average hazard rate between year 5 and year 10 is
λ̄[5,10] = (10× 0.025− 5× 0.015)/5 = 0.035.
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§3 Intensity-Based Credit Risk Modelling
Real-World vs Risk-Neutral Default Probabilities

Default probabilities backed out from bond prices or CDS spreads are risk-neutral
default probabilities (conventionally denoted by Q).

Default probabilities backed out from historical default data are real-world (i.e.
natural or physical) default probabilities (conventionally denoted by P).

For the same name and time to maturity, risk-neutral default probability are usually
much higher than real-world default probability.

Difference between the two is particularly larger during crises due to investors’ “flight to
quality”.
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§3 Intensity-Based Credit Risk Modelling
Real-World vs Risk-Neutral Default Probabilities

Real-world default probabilities: calculate 7-year hazard rates from Moody’s
default data (1970-2010), Table 16.1.

Risk-neutral default probabilities: estimate average 7-year hazard rates implied
from bond prices of Merrill Lynch data (1996-2007).

Assume risk-free rate equal to 7-year swap rate minus 10 bps, and recovery rate is
40%.

Shibo Bian (SUFE) Lecture: Financial Modelling 42 / 104



§3 Intensity-Based Credit Risk Modelling
Real-World vs Risk-Neutral Default ProbabilitiesA Comparison

Rating Historical Hazard Rate (% 
per annum) 

Hazard Rate from bonds 
(% per annum) 

Ratio Difference 

Aaa 0.03 0.60 17.2 0.57 
Aa 0.06 0.73 11.5 0.67 
A 0.18 1.15 6.5 0.97 
Baa 0.44 2.13 4.8 1.69 
Ba 2.23 4.67 2.1 2.44 
B 6.09 8.02 1.3 1.93 
Caa 13.52 18.39 1.4 4.87 
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• The ratio of the hazard rate backed out of bond prices to the hazard rate 
calculated from historical data is high for investment grade bonds, and 
tends to decline as the credit quality declines

Moody’s default data Merrill Lynch bond-price data
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§3 Intensity-Based Credit Risk Modelling
Risk Premiums Earned By Bond Traders

Risk Premiums Earned By Bond 
Traders

Rating Bond Yield 
Spread over 
Treasuries 

(bps) 

Spread of risk-free 
rate used by market 

over Treasuries  
(bps) 

Spread to 
compensate for 

default rate in the 
real world (bps) 

Extra Risk 
Premium 

(bps) 

Aaa 78 42 2 34 
Aa 86 42 4 40 
A 111 42 11 58 
Baa 169 42 26 101 
Ba 322 42 132 148 
B 523 42 355 126 
Caa  1146 42 759 345 
 

40

Expected 1-year default loss (real-world probability) = 1-year probability of default 
(calculated from the historical hazard rate from Moody’s ,Table 16.1) multiplied by 
(1-R) where recovery rate R=0.4
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§3 Intensity-Based Credit Risk Modelling
Why Extra Risk Premium Exists?

Corporate bonds are relatively illiquid and need additional compensation.

Subjective default probabilities of bond traders may be much higher than the
estimates from Moody’s historical data.

Bonds do not default independently of each other, which leads to systematic risk
that cannot be diversified away; so bond traders require an excess expected
return for bearing this risk.
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§3 Intensity-Based Credit Risk Modelling
Which World Should We Use?

We should use risk-neutral estimates for asset pricing, e.g. valuing credit
derivatives and estimating the present value of default cost.

We should use real-world estimates for risk management, e.g. calculating VaR
and scenario analysis.
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§4 Rating-Based Credit Risk Modelling
Historical Credit Rating Transition
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Dynamics of Credit Rating Transition

Jarrow-Lando-Turnbull model (Jarrow et al., 1997): the dynamics of credit rating
transitions is represented by a discrete-time Markov chain2.

To describe the dynamics of credit ratings quantitatively, let {Xt}t=0,1,2,...

represent (random) credit rating of a bond at time t , where Xt is a
time-homogeneous discrete-time Markov chain on finite discrete-state space

S = {1,2, . . . ,K ,K + 1},
where

1st state 1 represents the highest credit rating (e.g. AAA in S&P rankings);
K th state K represents the lowest credit rating (e.g. C in S&P rankings);
the last state K + 1 represents default or bankruptcy, i.e. absorbing state which means
once default, it will stay in the state of default forever;
to be consistent in notation, state 0 (excluded from S here) represents default-free.

Default is modelled as the first time of this discrete-time Markov chain that hits the
absorbing state (default state) K + 1.

2Similar idea was also adopted by Google co-founder Larry Page for his PageRank, Google’s
most well-known search ranking algorithm.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Natural Probability

(K + 1)× (K + 1) time-homogeneous one-step transition matrix is

Q(t , t + 1) ≡ Q :=

�
q1,1 · · · q1,k q1,K+1

...
. . .

...
...

qK ,1 · · · qK ,K qK ,K+1

0 · · · 0 1

�
, (24)

where

qi,j (t , t + 1) := Pr {Xt+1 = j | Xt = i} ≡ qi,j , i, j ∈ S , ∀t = 0,1,2, ...;

qi,j ∈ [0,1], ∀i 6= j, qi,i = 1−
K+1X

j=1,j 6=i

qi,j , ∀i;

are actual (or natural) transition probabilities in one unit time (say, 1 year), and
absorbing state for default is in the last row.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Estimating the Natural-Probability Transition Matrix from Real Data

Figure: Global Average One-Year Transition Rates (%), 1981–2004, Source: Standard & Poor

Estimate the transition matrix Q by eliminating Not-rated (NR) data:

Figure: Estimated Transition Matrix Q
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Term Structure of the Natural Default Probability

τ∗i is denoted as default time (absorption state) of Xt with the current credit rating
X0 = i , i.e.

τ∗i := inf{t ≥ 0 : X0 = i,Xt = K + 1}. (25)

Natural default probability within time T for the current i-rated bonds is

Pr{τ∗i ≤ T} = qi,K+1(0,T ), (26)

where qi,K+1(0,T ) is from the T-step transition matrix

Q(0,T ) = Q(T ) = QT . (27)
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Term Structure of the Natural Default Probability
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Figure: 30-Year Term Structure of Natural Default Probabilities for Investment Grades
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Risk-Neutral Probability

For the rating process after risk neutralization, X̃t , assume its associated
(K + 1)× (K + 1) one-step transition matrix is now time-non-homogeneous, i.e.

Q̃(t , t + 1) :=

�
q̃1,1(t , t + 1) · · · q̃1,K (t , t + 1) q̃1,K+1(t , t + 1)

...
. . .

...
...

q̃K ,1(t , t + 1) · · · q̃K ,K (t , t + 1) q̃K ,K+1(t , t + 1)
0 · · · 0 1

�
,

where

q̃i,j (t , t + 1) := ÜPr {Xt+1 = j | Xt = i} , i, j ∈ S , ∀t = 0,1,2, ...; (28)

q̃i,j (t , t + 1) ∈ [0,1], ∀i 6= j, q̃i,i (t , t + 1) = 1−
K+1X

j=1,j 6=i

q̃i,j (t , t + 1), ∀i;

are risk-neutral transition probabilities in one unit time.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Risk-Neutral Probability

Assume risk-neutral transition probabilities can be transferred from the
corresponding actual transitional probabilities by

q̃i,j (t , t + 1) := πi,j (t , t + 1)qi,j , ∀j 6= i, (29)

where
qi,j is actual transitional probabilities of the observed time-homogeneous Markov chain
Xt ;
πi,j (t , t + 1) are risk premium adjustments.

For simplicity, further assume

πi,j (t , t + 1) = πi (t , t + 1), ∀j 6= i, (30)

which are deterministic functions of time t such that q̃i,j (t , t + 1) ∈ [0,1] for all i, j .

X̃t and spot risk-free interest rate process are assumed to be mutually
independent under risk-neutral measure.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Risk-Neutral Default Probability

τ̃∗i is denoted as default time (absorption state) of X̃ when X̃0 = i , i.e.

τ̃∗i := inf{t ≥ 0 : X̃0 = i, X̃t = K + 1}. (31)

Risk-adjusted survival probability isÜPr{τ̃∗i > T} =
KX

k=1

q̃i,k (0,T ) = 1− q̃i,K+1(0,T ), (32)

where q̃i,K+1(0,T ) can be obtained from time-non-homogeneous T-step
transition matrix

Q̃(0,T ) = Q̃(0,1) ∗ Q̃(1,1 + 1) ∗ ... ∗ Q̃(T − 1,T ). (33)
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Pricing Defaultable Bonds

Present value of defaultable zero-coupon bond of i th-class credit rating which
needs pay $ 1 at maturity T is

vi (0,T ) =v0(0,T )

�
R + (1−R)ÜPr{τ̃∗i > T}

�
, i = 1,2, ...,K , (34)

where
v0(0,T ) is present value of a default-free zero-coupon bond which pays $1 at maturity
T ;

R ∈ [0,1] is constant recovery rate (say, 40%);

risk-free interest rate and default are assumed to be independent.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Numerical Implementation

Assume there are only 3 states of creditworthiness: I = Investment Grade, J = Junk Grade,
D = Default (absorbing), with one-year transition matrix

Q =

�
0.90 0.05 0.05
0.10 0.80 0.10

0 0 1

�
I
J
D

.

Given the associated risk-free interest rate and credit spreads by�
r01

r02

�
=

�
0.08
0.09

�
,

�
sI,01

sI,02

�
=

�
0.01
0.015

�
,

�
sJ,01

sJ,02

�
=

�
0.02
0.03

�
.

Assume there is no correlation between credit rating migration and interest rate.

Market traded prices of defaultable zero-coupon bonds of maturities T = 1,2 for ratings I, J
are observed as

BI (0,1) =
1

1.09
, BI (0,2) =

1
1.1052 ; BJ (0,1) =

1
1.10

, BJ (0,2) =
1

1.122 .
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Numerical Implementation

Payoff vector is C :=

�
1
1
R

�
where recovery rate R is assumed to be R = 40%.

If the current (at time t = 0) state is I, then, we transform natural probabilities QI into
risk-neutral probabilities Q̃I by adjustment πI ,

QI =

�
0.90
0.05
0.05

�
−→ Q̃I =

�
1− 0.10πI (0,1)

0.05πI (0,1)
0.05πI (0,1)

�
.

We can calibrate risk-premium adjustment πI , by making the expected value of discounted
cash-flows equal to the traded price of bond in market, i.e.

BI (0,1) =
1

1 + r01
CT Q̃I i.e.

1
1.09

=
1

1.08

�
1 1 0.4

�� 1− 0.10πI (0,1)
0.05πI (0,1)
0.05πI (0,1)

�
giving πI (0,1) = 0.30581.
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§4 Rating-Based Credit Risk Modelling
Jarrow-Lando-Turnbull Model: Numerical Implementation

Similarly, for calibrating πJ , we have

BJ (0,1) =
1

1 + r01
CT Q̃J i.e.

1
1.10

=
1

1.08

�
1 1 0.4

�� 0.10πJ (0,1)
1− 0.20πJ (0,1)

0.10πJ (0,1)

�
(35)

giving πJ (0,1) = 0.30303.

Implied risk-neutral transition matrix within the first year is

Q̃(0,1) =

�
0.9694 0.0153 0.0153
0.0303 0.9394 0.0303

0 0 1.00

�
I
J
D

. (36)
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model: A View from Corporate Finance

Information about equity prices is more up-to-date than credit ratings.

Merton’s model (Merton, 1974) relates credit risk of a (limited-liability) firm to its
capital structure (assets and liabilities), and regards equity as an option on firm
value.

Assumptions:
1 Firm is funded by equity and debt, i.e.

Vt = Et + Bt , t ≥ 0,

where Vt is firm value (total value of firm’s assets), Et is equity value, Bt is debt value.

2 Debt is a zero-coupon bond with a constant debt repayment D at maturity T .

3 Vt under risk-neutral measure follows SDE

dVt

Vt
= rdt + σV dWt ,

where σV is volatility of firm value.
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model

By capital structure and bankruptcy law:

Default State Firm Value Debt Value Equity Value

no default VT ≥ D D VT −D
default VT < D VT 0

Then, equity value ET (i.e. payment to shareholders at time T ) is

ET = max
�

VT −D,0
	
.

Shareholders are long a call option on its asset value with strike D and maturity T ;
debtholders are short a put option with same strike and maturity.
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model

r = 5%, σV = 0.2,D = 6,V0 = 8,N = 100
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model

By B-S formula, firm’s equity price today is

E0 = V0Φ(d1)−De−rT Φ(d2),

where

d1 :=
ln V0

D +
�

r + σ2
V
2

�
T

σV
√

T
,

d2 :=
ln V0

D +
�

r − σ2
V
2

�
T

σV
√

T
= d1 − σV

√
T .

Risk-neutral PD is
Pr{VT ≤ D} = Φ(−d2).

Value of defaultable zero-coupon bond today is

B0 = V0 − E0 = V0Φ(−d1) + De−rT Φ(d2).
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model

r = 5%, σV = 0.2,D = 6
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model: Distance-to-Default (DtD)

Distance-to-Default (DtD) is the number of standard deviations of firm’s value that
must change for default to be triggered T years in future, i.e.

DtD := d2 =
ln V0

D +
�

r − σ2
V
2

�
T

σV
√

T
.

The smaller the value of DtD, the larger the probability of default.

DtD is essentially a volatility-corrected measure of leverage (Duffie et al., 2007,
p.639), an important factor (accounting measure) for forecasting default (Bharath
and Shumway, 2008).
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model: Distance-to-Default (DtD)

Estimated default intensities are strongly monotonically decreasing in DtD: a 10% reduction
in distance to default causes an estimated 11.3% proportional increase in default intensity
(Duffie et al., 2007, p.649).

distance to default dominates the other covariates in economic importance when viewed in
terms of the impact of a typical (one standard deviation) variation of the covariate on the
term structure of default probabilities. Fig. 1 shows the empirical frequency of default
within one year as a function of distance to default (with kernel smoothing), indicating that
the exponential dependence in (17) is at least reasonable for this crucial covariate.
Controlling for other covariates, the default intensity is estimated to be significantly

declining in short-term interest rates. While this runs counter to the role of interest rates in
determining the interest expense of corporations (by which higher rates place firms under
more financial distress, not less), the sign of the coefficient for the short rate is consistent
with the fact that short rates are often increased by the US Federal Reserve in order to
‘‘cool down’’ business expansions. Default intensities are estimated to increase in the
trailing one-year return of the S&P 500, controlling for other covariates. This could be due
to correlation between individual stock returns and S&P 500 stock returns, and perhaps
due to the trailing nature of the returns and business-cycle dynamics.
As a rough diagnostic of the reasonableness of the overall fit of the model, one can

compare the total predicted number of defaults implied by the estimated default intensity
paths, about 471 (which is the integral of the total default intensity path shown in Fig. 2),
with the actual number of defaults during the same period, 497. In Section 5, we review the
out-of-sample predictive power of the estimated model.

4.2. Term structures of default hazards

We are now in a position to obtain maximum likelihood estimates, by firm and
conditioning date, of the term structure of conditional default probabilities. These are
obtained from their theoretical counterparts by substituting parameter estimates into (1).
In order to illustrate the results more meaningfully, we will report examples of the
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Fig. 1. The dependence of empirical default frequency on distance to default. For each distance to default x

indicated on the horizontal axis, the plot indicates the fraction of those firms in the sample whose distance was

default was x (within a kernel smoothing) at the beginning of a year that defaulted within one year.

D. Duffie et al. / Journal of Financial Economics 83 (2007) 635–665650

Figure: Empirical one-year default frequency as a function of DtD with kernel smoothing
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§5 Equity-Based Credit Risk Modelling
Merton’s Structure Model

Firm’s value Vt is unobservable, its initial value V0 and volatility σV need
calibration.

By Ito’s Lemma,

σE E0 =
∂E
∂V

σV V0,

where ∂E
∂V = Φ(d1), and volatility of equity price σE can be estimated (Jones et al.,

1984).

Two equations of (V0, σV ) enable V0 and σV to be determined (implied) from E0

and σE .
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§5 Equity-Based Credit Risk Modelling
Numerical Example of Merton’s Structure Model

Example (Merton’s Structure Model)

A company’s equity E0 is $3 million, volatility of equity σE is 80%. Risk-free rate r is 5%, debt D is
$10 million, time to maturity T is 1 year.

Solving the two equations (via Excel ‘Solver’) gives V0 = 12.40, σV = 21.23%.

1-year PD is
PDT=1 = Φ(−d2) = 12.7%.

The current implied market value of debt (zero-coupon bond) is

B0 = V0 − E0 = 12.4− 3 = 9.40.

Present value of promised payment is 10× e−5%×1 = 9.51.

Expected loss percentage is

L% = (9.51− 9.40)/9.51 = 1.2%.

Recovery rate is R = 91%, implied from equation L% = PDT=1 × (1−R).

1-year DtD = 1.14.
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§5 Equity-Based Credit Risk Modelling
Industrial Applications of Merton’s Structure Model

1 KMV model

2 JP Morgan’s CreditMetrics (Gupton et al., 1997)

3 Basel 2, 2.5, 3

4 CreditMetrics’ CreditGrades (Finkelstein et al., 2002)
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§5 Equity-Based Credit Risk Modelling
Imperfections of Merton’s Structure Model

1 Default can only occur at maturity T , no matter the behaviour of asset value before
T .

2 Capital structure is too simple: e.g. debt is a simple zero-couple bond.

3 Default can be predicted with increasing precision as time passes, which is due to
the path continuity of geometric Brownian motion.
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§5 Equity-Based Credit Risk Modelling
Extensions of Merton’s Structure Model: First-passage Time Models

Example (Black-Cox Model)

Black and Cox (1976) allows default time be any time within (0,T ]:The Black–Cox Model with Constant Barrier 61
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Figure 4.3 Exemplification of a first-passage model

and Shreve 1999). If the underlying asset has survived up to time t , the conditional
survival probability up to maturity in the risk-neutral setting is given by:

PSurv(T |Ft ) = P (τ >T |τ > t) = �(d3) − L

Vt

(2r/σ 2
V )−1

�(d4)

where � is the distribution function of a Standard Normal random variable and

d3 = log(Vt/L) + (r − σ 2
V /2)(T − t)

σV

√
T − t

d4 = d3 − σV

√
T − t .

This result has been subsequently extended to the situation where the default barrier,
say H , is assumed to be lower than the value of the asset’s liabilities L. We
can think of this hypothesis as if the barrier acts as a protection mechanism for
bondholders against an unsatisfactory performance of the company. The asset value
can go below L (the company’s liabilities) before maturity, but needs to be always
higher than this value at maturity. It is said in this situation that the barrier acts as
a safety covenant. Default prior to maturity happens when H is hit.

Numerous other extensions and modifications of the Black–Cox model have
been developed to include, for instance, stochastic interest rates and a stochastic
default barrier (see, e.g., Longstaff and Schwartz 1995, Kim et al. 1993). Other
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§5 Equity-Based Credit Risk Modelling
Extensions of Merton’s Structure Model: First-passage Time Models

Example (Black-Cox Model)

Default time is defined by
τ∗ := inf

�
t > 0 | Vt ≤ D

	
,

i.e. the first-passage time hitting the continuously-monitored default barrier D < S0.

Cumulative survival probability by time T at time 0 is

Pr{τ∗ > T} = Φ(d1)−
�

D
V0

� 2r
σ2
V

−1
Φ(d2).

Other first-passage time models: time-dependent barrier of Black and Cox (1976),
stochastic barrier of Kim et al. (1993), see also Fischer et al. (1989); Leland
(1994).
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§6 Modelling Dependent Defaults
Correlation of ReturnsIntroducing Correlation 75
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FIGURE 6.2 Historical correlation of daily and weekly returns between S&P 500
and Nikkei 225 over a three-month rolling window since 2000.

Conventionally all implied volatilities are for the same moneyness level
k (strike over spot) and maturity T, and weights are equal.

6-2 CORRELATION MATRICES

Very often we are interested in correlation for a selection of n ≥ 2 assets.
This leads to a correlation matrix of the form:

R =

⎛⎜⎜⎜⎜⎜⎜⎝

1 𝜌1,2 𝜌1,3 · · · 𝜌1,n
𝜌2,1 1 𝜌2,3 · · · 𝜌2,n
𝜌3,1 𝜌3,2 1 · · · 𝜌3,n
⋮ ⋮ ⋮ ⋱ ⋮

𝜌n,1 𝜌n,2 𝜌n,3 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝜌i,j is the pairwise correlation coefficient between assets S(i) and S(j),
which may either be historical or implied. Note that R is symmetric because
𝜌i,j = 𝜌j,i.

Not every symmetric matrix with entries in [−1, 1] and a diagonal of
1’s is a candidate for a correlation matrix R. This is because the correlation
between assets S(i) and S(j) and assets S(j) and S(k) says something about the
correlation between assets S(i) and S(k)—intuitively, if Microsoft and Apple
are highly correlated, and Apple and IBM are also highly correlated, then
Microsoft and IBM must also have some positive correlation.

Figure: Historical correlation of daily and weekly returns between S&P500 and Nikkei225 over a 3-month
rolling window since 2000
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§6 Modelling Dependent Defaults
Dependent Defaults via Correlation

Given a time horizon T , default-event correlation between two names is the correlation
between default indicators 1{τ∗1 < T} and 1{τ∗2 < T}, i.e., Pearson correlation coefficient

ρ1,2(T ) :=
E
�

1{τ∗1 < T}1{τ∗2 < T}
�
−E
�

1{τ∗1 < T}
�

E
�

1{τ∗2 < T}
�É�

E
�

1{τ∗1 < T}2
�
−E
�

1{τ∗1 < T}
�2
��

E
�

1{τ∗2 < T}2
�
−E
�

1{τ∗2 < T}
�2
�

=
p1,2(T )− p1(T )p2(T )È

p1(T )
�

1− p1(T )
�

p2(T )
�

1− p2(T )
� ,

where marginal default probabilities

p1(T ) := E
�

1{τ∗1 ≤ T}
�
, p2(T ) := E

�
1{τ∗2 ≤ T}

�
,

and joint default probability

p1,2(T ) := E

h
1{τ∗1 < T}1{τ∗2 < T}

i
.

It only depends on the first two moments.

For empirical analysis by S&P, see De Servigny and Renault (2002).
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§6 Modelling Dependent Defaults
Examples of Bivariate Uniform Distribution U [0,1]2: Dependent But Zero Correlation
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Figure 2.6: The Same Independence Linear Correlation ρ ≡ 0 Different Dependence Structures

Implied by t−Student Ct
ν,ρ−kernel by 5000 Samples

Figure 2.6 provides a solid evidence showing that only using linear correlation param-

eter ρ to measure dependence structures is inefficient and can not capture various

different dependence patterns. It also confirm that the following famous statement is

false:

X1 and X2 are independent ⇐⇒ ρ(X1, X2) = 0.

Additionally, when ν increases, the implied t−Student Ct
ν,ρ−kernel becomes more

similar to the implied Gaussian CG
ρ −kernel in space [0, 1]2 as Figure 2.3. That is because,

Gaussian copula is a special case of Student-t copula, and could be approached by letting

the degree of freedom ν go to infinity, i.e.

CG
ρ = lim

ν→∞
Ct

ν,ρ (2.95)

That is essentially because, the density function of tν , i.e. t−Student distribution with

degree of freedom ν, fν(x) is given by

fν(x) =
Γ
(
ν + 1

2

)

Γ
(
ν
2

)
Γ
(
1
2

)√
ν

(
1 +

x2

ν

)− ν+1
2

(2.96)
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Figure: Zero-correlation Dependent Bivariate Uniform Distributions by t-student Copula of 5000 Samples
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§6 Modelling Dependent Defaults
Examples of Bivariate Uniform Distribution U [0,1]2: Different Dependency Structures
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Figure 2.7: Distribution Transformation Processes and Implied Clayton CA(C)
θ=5 −kernel by 5000

Samples
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Figure: Dependent Bivariate Uniform Distributions by Archimedean Copula of 5000 Samples
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§6 Modelling Dependent Defaults
Examples of 3D Uniform Distribution U [0,1]3: Different Dependency Structures

Figure: Gaussian v.s. Clayton Copulas: (U1,U2,U3) ∼ U [0,1]3 of Different Dependency with 5,000 Samples
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§6 Modelling Dependent Defaults
Dependent Defaults via Copulas

Copula is a multivariate probability distribution for which marginal probability
distribution of each variable is uniform.

Theoretical foundation, Sklar’s Theorem (Sklar, 1959) states that, any multivariate
joint distribution can be written in terms of univariate marginal distribution functions
and a copula which describes the dependence structure between variables.

Recommend books:

1 An Introduction to Copulas (Nelsen, 2006)

2 Copula Methods in Finance (Cherubini et al., 2004)
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§6 Modelling Dependent Defaults
Dependent Defaults via Copulas: The Portfolio Loss Distribution

For a portfolio of n defaultable bonds, denote τ∗i as the default time of i th bond,
then, the total number of defaults within time period [0,T ] is

NT =

nX
i=1

1{τ∗i ≤ T},

where default times {τ∗i }i=1,2,...,n could be dependent.

Figure: Distribution of default number for different ρ, homogenous λ = 5%, T = 1, n = 300, 10000 samples
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§7 Pricing Collateralized Debt Obligation (CDO)
Basis of Asset-Backed Securities

Structured finance was initially developed by US banking world in early 1980s (in
mortgage-backed-securities (MBS) format), in order to reduce regulatory capital
requirements by removing and transferring risk from balance sheet to other
parties3.

Asset-backed securities (ABS)4 and MBS contracts are not yet standardized.

However, there are certain features that emerge in virtually any ABS deal, the
most important of which are

1 default risk,

2 loss-given-default (LGD), or recovery rate,

3 prepayment risk (due to the amortization of principal value).

Reality shows negative correlation between default and prepayment.
3However, some counter-examples have been found in Acharya et al. (2013) that the motivation

of securitization (for asset-backed commercial papers) is not necessary to remove and transfer risk
but to take more risk due via implicit guarantees.

4Workshop on ABS by Prof. Giddy at NYU: http://giddy.org/abs-hypo.htm
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§7 Pricing Collateralized Debt Obligation (CDO)
Basis of Asset-Backed Securities: Outstanding and Issuance of US/EU SecuritisationThe case for a better functioning securitisation market in the European Union   12 

 

 
 

Chart 1: US securitisation outstanding Chart 2: European securitisation outstanding 
(a)

 

  

Sources: SIFMA.  Sources: SIFMA and Bank calculations. 

(a)  Includes retained deals 

Chart 3: US securitisation issuance  Chart 4: US ABS issuance 

  

Sources: SIFMA. 

 

Source:  SIFMA. 

Chart 5: European securitisation issuance   
(a)

  Chart 6: European ABS issuance 
(a)

 

  

Sources: SIFMA and Bank calculations. 

(a) Includes retained issuance 

Sources: SIFMA and Bank calculations. 

(a) Includes retained issuance 
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§7 Pricing Collateralized Debt Obligation (CDO)
Asset-Backed Security (ABS)

ABS security is created from cash
flows of financial assets (such as
loans, bonds, credit card receivables,
mortgages, auto loans).

A portfolio of assets (such as
subprime mortgages) is sold by the
originators of assets to a special
purpose vehicle (SPV), and cash flows
from assets are allocated to tranches.

Each tranche is defined in terms of
upper (detachment) and lower
(attachment) points representing the
percentage of total notional.

Cash flows are allocated to tranches
by specifying what is known as a
"waterfall": losses are applied in
reverse order of seniority of tranches.
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§7 Pricing Collateralized Debt Obligation (CDO)
The Waterfall in ABS Cash flows

Equity tranche is much less likely to realize its
return than the other two tranches.

There is a separate cash-flow waterfall for
interest and principal:

Interest cash flows from the assets are
allocated to senior tranche until senior
tranche has received its promised return
on its outstanding principal.

If promised return to the senior tranche can
be made, cash flows are then allocated to
mezzanine tranche.

Principal cash flows are used first to repay
the principal of senior tranche, then
mezzanine tranche, and finally equity
tranche.
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§7 Pricing Collateralized Debt Obligation (CDO)
Credit Ratings of ABS Tranches

Senior tranche of ABS is designed to be rated AAA.

Mezzanine tranche is typically rated BBB.

Equity tranche is typically unrated.

Unlike the ratings assigned to bonds, the ratings assigned to tranches are
"negotiated ratings".

The creator of ABS makes a profit when the total return on underlying assets is
greater than the total return offered to tranches.
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§7 Pricing Collateralized Debt Obligation (CDO)
ABS CDOs (Mezz CDOs)

Senior AAA-rated tranches created from subprime mortgages can be easily sold
to investors.

Equity tranches are typically retained by the originator of mortgages or sold to a
hedge fund.

Mezzanine tranches are usually hard to sell.

This led financial engineers to create an ABS from mezzanine tranches of ABSs
that were original created from subprime mortgages.
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§7 Pricing Collateralized Debt Obligation (CDO)
Losses to AAA Tranche of ABS CDO
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§7 Pricing Collateralized Debt Obligation (CDO)
Example of ABS CDOs

More realistic example of subprime securitizations with ABS, ABS CDOs, and a
CDO of CDO being created:
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§7 Pricing Collateralized Debt Obligation (CDO)
The Risk of BBB Tranches

BBB tranches of ABSs are often quite thin (1%-3%).

They tend to be either safe or completely wiped out.

The rating agency models attempted to assign BBB tranche of ABS with the same
probability of loss, i.e. the same expected loss, as a BBB bond.

They have a quite different loss distribution (and correlation) from BBB bonds, and
should not be treated as equivalent to BBB bonds (Coval et al., 2009a,b).
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§7 Pricing Collateralized Debt Obligation (CDO)
Dr. David Li, His Copula Models for Pricing CDOs, and Financial Innovations

"Understanding the credit risk profile of CDO tranches poses challenges even to
the most sophisticated participants." – Dr. Alan Greenspan, former chairman of
US Federal Reserve (Financial Times, 2005)

Dr. David Li invented the formula in his paper "On Default Correlation: A Copula
Function Approach" (Li, 2000) for pricing CDOs which later "killed" Wall Street.

Financial Times called him "the world’s most influential actuary".
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§7 Pricing Collateralized Debt Obligation (CDO)
Correlation Examples: Independent Defaults v.s. Perfectly-correlated Defaults

Consider a CDO with 100 bonds. Assume default rate on bonds is about 1% per year.

Independent defaults:

Assume that defaults are independent (no clustering).

Each year, there will be about 1 default.

Over 5 years, there will be about 5 defaults.

This will almost certainly wipe out the entire equity tranche.

Perfectly-correlated defaults:

Assume defaults are perfectly correlated: when one bond defaults, they all default.

Now, in about 1 year out of 100, everyone defaults; and in 99 years out of 100, no one
defaults.

Over a 5-year period, there is about a 5% chance everyone defaults.

5% of the time the equity tranche is wiped out, 95% of the time they suffer no loss.
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§7 Pricing Collateralized Debt Obligation (CDO)
Standardised Synthetic CDOs: iTraxx EUR102 Multivariate Credit Products

Premiums
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Figure 6.1 CDO mechanisme and CDO tranches

There exist some standardized synthetic CDOs: the most popular ones are the
CDOs based on the portfolio of CDSs in the iTraxx Europe Main index and the
Dow Jones CDX.NA.IG index. The tranches points are 3, 6, 9, 12 and 22% for
the former and 3, 7, 10, 15 and 30% for the latter. So, unlike ‘bespoke’ tranches,
index tranches have standardized documentation and use standard attachment and
detachment points. Index tranches are quoted on all the maturities of the indices,
which are 3, 5, 7 and 10 years.

A CDO tranche is typically quoted with an upfront and a running spread. The
upfront is the percentage of the notional that one receives upfront (i.e. when the
deal is struck) if one sells protection: the running spread is the yearly spread that
one (additionally) receives during the lifetime of the tranche. It often turns out that
upfront is agreed to be zero for most tranches. This is the case for the standardized
iTraxx and CDX CDOs; for these very popular CDOs only the [0–3%] tranche
has an upfront until end of 2008. Since beginning of 2009, the CDX [3%–7%]
tranche has also an upfront. For all these tranches, for the moment the running
spread is fixed at 500 bp and it is the upfront (in percentage points) that is quoted
and fluctuates over time.

For example, the situation on 16 October 2008 for the iTraxx Europe Main
tranches (Series 10) for the 5-year structure is given in Table 6.1; the situation for
the Dow Jones CDX NA IG is summarized in Table 6.2.

In order to understand the CDO mechanism, it is sometimes useful to think
about it as a bath that can be filled with water. Imagine that we have a CDO of
125 companies and that, in the case of default, each company has a recovery, R of
say 40%. Then each default among the 125 companies fills the ‘100 litre bath’ with
100 × (1 − R)/125 = 0.48 litres of water. If you have sold protection on a certain
tranche, you receive a fee on the amount of your tranche that is not under water.

Figure: CDO mechanism and CDO tranches
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§7 Pricing Collateralized Debt Obligation (CDO)
Market Quotes of Typical Standardised Synthetic CDO
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Fig. 1. CDX Index and Tranche Spreads. This figure graphs the time series of the
CDX index and its tranche spreads for the October 2003 to October 2005 sample period.
Spreads are in basis points. The vertical division lines denote the roll from one CDX index
to the next.

Figure: Time series of CDX index and tranche spreads (bps), 8/2003-10/2005 (Longstaff and Rajan, 2008)
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§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

Consider a synthetic CDO with maturity T and underlying n different CDSs of the
same maturity T , and same coupon-payment dates 0 < t1 < t2 < · · · < tm = T .

τ∗i is denoted as default time of i th name, i = 1,2, ...,n.

The accumulated (aggregated) portfolio loss process up to time t is

Lt =

nX
i=1

N(1−Ri )1{τ∗i ≤ t}, t ∈ [0,T ],

where N is notional and Ri is constant recovery rate of i th name.

The process of accumulated (aggregated) portfolio loss percentage up to time is

L%
t =

Lt
nN

.

Shibo Bian (SUFE) Lecture: Financial Modelling 93 / 104



§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

The accumulated loss process of a CDO tranche of attachment A and detachment
B up to time t is

L[A,B]
t = (Lt − A)+ − (Lt − B)+, 0 ≤ A < B, t ∈ [0,T ].

grey stripe in Fig. 1), then at the subsequent coupon date the equity tranche holders will be
paid 35% of the remaining tranche notional (the unflooded portion in the equity tranche).

Similarly, the mezzanine tranche periodically receives coupon payments of 15% on the
stochastically decaying tranche notional (initially set to 25% � 7% = 18% of the total
bond portfolio) until the losses reach 25% of the portfolio principal, at which point the
contract is written down. The senior tranche is responsible for all losses in excess of the
25% absorbed by the equity and mezzanine tranches and, being the safest tranche, receives
the lowest coupon rate among the three tranches. Fig. 2 displays the loss absorbed by each
tranche as a function of the aggregated loss in the reference collateral pool.

The CDO structure in Fig. 1 is referred to as a cash CDO. There are natural extensions
to this idea – liability structures with more (or fewer) than three tranches, combinations of
fixed- and floating-coupon assets, and liability asset classes other than bonds. An increas-
ingly popular variation of the CDO technology is the synthetic CDOs, which are very sim-
ilar to cash CDOs, except that the bonds are replaced by credit default swaps; the arranger
of a synthetic CDO passes the default risk on to the CDO tranches, thereby allowing
investors to participate at different risk levels.

2.2. Portfolio loss approach in pricing CDOs

This paper focuses on pricing the CDO tranches using the so-called portfolio loss

approach, in which all cashflows during the life of the CDO are expressed in terms of
the cumulative losses in the reference portfolio at prespecified coupon dates. Thus, the
price of a CDO tranche can be written as an expectation with respect to the distribution
of the underlying portfolio loss process. The detailed explanation of this approach can be
found, for example, in Andersen et al. (2003) and Laurent and Gregory (2003). We now
briefly explain the approach.

From the payoff scheme described in the previous section, one can see that the value of
a CDO tranche equals the default-free cashflows (calculated as a fixed coupon rate on the
entire tranche notional) less the losses resulting from defaults in the reference pool. The

Fig. 2. Losses absorbed by each tranche.

4 P. Glasserman, S. Suchintabandid / Journal of Banking & Finance xxx (2006) xxx–xxx
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Please cite this article in press as: Glasserman, P., Suchintabandid, S., Correlation expansions for
CDO pricing, J. Bank Finance (2006), doi:10.1016/j.jbankfin.2006.10.018
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§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

For A > 0, from protection sellers’ point of view (ignoring counterparty risk):

Expected loss of tranche [A,B]:

Loss Leg[A,B] = E

�Z T

0
D(0, t)dL[A,B]

t

�
= E

"
mX

k=1

Z tk

tk−1

D(0, t)dL[A,B]
t

#
≈ E

"
mX

k=1

D
�

0,
tk−1 + tk

2

��
L[A,B]

tk
− L[A,B]

tk−1

�#
,

where

dL[A,B]
t is loss increment of tranche [A,B] at time t ;

D(0, t) is the current price of a default-free zero-coupon bond of maturity t ;

It is usually assumed that defaults only occur in the middle of coupon-payment dates
(Andersen et al., 2003).
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§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

Expected premium of tranche [A,B]:

Premium Leg[A,B] = E

� mX
k=1

D(0, tk )

Z tk

tk−1

s[A,B]
0 O[A,B]

t dt

�
≈ E

"
mX

k=1

D(0, tk )s
[A,B]
0 (Tk − Tk−1)

O[A,B]
tk+1

+ O[A,B]
tk

2

#
= E

"
mX

k=1

D(0, tk )s
[A,B]
0 (Tk − Tk−1)

 
B − A−

L[A,B]
tk

+ L[A,B]
tk−1

2

!#
,

where

outstanding notional of tranche [A,B] up to time t is

O[A,B]
t = (B − A)− L[A,B]

t ;

s[A,B]
0 is credit spread of tranche [A,B] at today t = 0 when the contract is created.
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§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

Today t = 0, set fair spread s[A,B]
0 such that the tranche’ PV = expected premium –

expected loss =0, then,

s[A,B]
0 ≈

E

�Pm
k=1 D

�
0, tk−1+tk

2

��
L[A,B]

tk
− L[A,B]

tk−1

��
E

�Pm
k=1 D(0, tk )(Tk − Tk−1)

�
B − A−

L[A,B]
tk

+L[A,B]
tk−1

2

�� , A > 0;

or, simply,

s[A,B]
0 ≈

E

�Pm
k=1 D(0, tk )

�
L[A,B]

tk
− L[A,B]

tk−1

��
E

�Pm
k=1 D(0, tk )(Tk − Tk−1)

�
B − A− L[A,B]

tk

�� , A > 0.
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§7 Pricing Collateralized Debt Obligation (CDO)
Cash-flow Structure of A Synthetic CDO

For A = 0, i.e. equity tranche [0,B]:

Seller of equity tranche pays an up-front fee at the effective date of CDO and pays
coupons at a fixed running spread of 500 bps per year to buyer.

Equity tranche spread is defined as the ratio of up-front fee to the notional of
equity tranche, i.e.

s[0,B]
0 ≈ 1

B

¨
E

"
mX

k=1

D
�

0,
tk−1 + tk

2

��
L[0,B]

tk
− L[0,B]
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�#
−5%×E

"
mX
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D(0, tk )(Tk − Tk−1)

 
B −

L[0,B]
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2
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§7 Pricing Collateralized Debt Obligation (CDO)
Typical Standardised Synthetic CDO Quotes

Markets quote CDO tranches only for standardized pools of CDS.

The most liquid indices:
1 iTraxx EUR on 125 European names;
2 CDX IG on 125 US names.

Table: Typical CDO Quotes for 5-year Tranches, Aug. 4, 2004 (Hull and White, 2004)

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% 0-100% (Index)
CDX IG 41.38% +500 349 135.5 46 14 63.25

iTraxx EUR 27.6% +500 168 70 43 20 42

Table: Implied Correlations from Gaussian-copula Model, Aug. 4, 2004

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% Intensity λ

CDX IG 21.7% 4.1% 17.8% 18.5% 29.8% 1.066%
iTraxx EUR 20.5% 5.2% 16.1% 23.3% 31.2% 0.701%
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Recommended Books

1 Credit Risk: Pricing, Measurement, and Management (Duffie and Singleton, 2003)

2 Credit Risk Modeling: Theory and Applications (Lando, 2004)

3 Credit Derivatives Pricing Models: Models, Pricing and Implementation
(Schönbucher, 2003)

4 Introduction to Credit Risk Modeling (Bluhm et al., 2010)

5 Credit Risk: Modeling, Valuation and Hedging (Bielecki and Rutkowski, 2004)

6 Credit Risk Modeling Using Excel and VBA (Löeffler and Posch, 2010)

7 Modelling Single-name and Multi-name Credit Derivatives (O’Kane, 2011)
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