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§1 Default Risk

Credit Risk

@ Credit risk arises from the possibility that borrowers, bond issuers, and
counterparties in transactions may default.

@ It exists in commercial banking (e.g. credit cards, loans), investment banking (e.g.
corporate bonds, credit derivatives), sovereign (e.g. Argentina, Russian, Greece).
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§1 Default Risk

Modelling Methodologies

@ Regulators require banks to keep capital for credit risk.

@ Under Basel ll, banks can, with approval from bank regulators, develop their own
models to estimate default probabilities for determining the amount of capital they
are required to keep.

@ This leads banks to search for various approaches of estimating default
probabilities:

e Use accounting data (e.g. Altman’s Z-score);
@ Use historical default data (e.g. from Moody’s);
e Use bond prices from the market;

@ Use Credit Default Swap (CDS) spreads from the market;

Use equity prices from the market (e.g. Merton’s structure model).
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§2 Accounting-Based Credit Risk Modelling

Altman’s Z-score for the Publicly-listed Firms

@ Altman’s Z-score model (Altman, 1968) based on discriminant analysis predicts
defaults of publicly-traded manufacturing companies (e.g. Toyota, Volkswagen,
Samsung Electronics) within 2 years from 5 firm-specific accounting ratios:

Z=12X;+1.4Xo+3.3X5+ 0.6X; + 0.999.X5, (1)

where
@ X; = Working Capital / Total Assets (measuring liquid assets relative to the size of
company), Working Capital = Current Assets — Current Liabilities;

@ X, = Retained Earnings / Total Assets (measuring cumulative profitability over time that
reflects earning power and firm’s age);

@ X3 = Earnings Before Interest and Taxes (EBIT) / Total Assets (measuring productivity
and operating efficiency of the firm’s assets, abstracting from any tax or leveraging
factors);

e X, = Market Value of Equity / Book Value of Liabilities (measuring how far firm’s assets
can decline before the company becomes insolvent);

@ X5 = Sales/ Total Assets (measuring ability of firm’s assets to generate sales).
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§2 Accounting-Based Credit Risk Modelling

Altman’s Z-score for the Publicly-listed Firms

@ Prediction — the greater a firm’s bankruptcy potential within 2 years, the lower its
overall index Z-score (discriminant score):
o If Z > 3.0, safe — default is unlikely;
e If2.7 < Z < 3.0, we should be on alert;
e If1.8 < Z < 2.7, there is a moderate chance of default;

e If Z < 1.8, financial distress — there is a high chance of default.
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§2 Accounting-Based Credit Risk Modelling

Altman’s Z-score for the Privately-held: Discriminant Analysis

@ Z-score model predicts defaults of privately-held firms (e.g. Cargill, PWC, Ernst &
Young) from 5 accounting ratios:

Z = 0.717X; + 0.847 X, + 3.107X5 + 0.420X; + 0.998Xs, @)

where
@ X; = (Current Assets — Current Liabilities) / Total Assets;
@ X, = Retained Earnings / Total Assets;
@ X3 = Earnings Before Interest and Taxes (EBIT) / Total Assets;
@ Xy = Book Value of Equity / Total Liabilities;
@ Xs = Sales / Total Assets.

@ Prediction:
o If Z > 2.9, safe — default is unlikely;
e If Z < 1.23, financial distress — there is a high chance of default.
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§2 Accounting-Based Credit Risk Modelling

Altman’s Z-score Calculator

ATM = INVESTORS ASSOCIATION

ALTMAN Z-SCORE
TYPE OF COMPANY] CYCLICAL COMPANY [=]
PUBLICLY LISTED COMPANY
PRIVATE FIRMS
1 Total Assets CYCLICAL COMPANY.
2 Total Liabilities | €80,944.00
3 Current Assets ] €28,291.00
4 Gurrent Liabllities 1 €50,255.00
5 EBIT 1 (€6,027.00)
6 Retained Earnings j {€ 40,419.00)
7 Het Sales € 25,201.00
8 Market Gapitalization €7,425.00
-3.67
BANKRUPT ZONE
2=280 SAFETY ZONE
11=Z<2.60 GREY ZONE
<11 BANKRUPT ZONE
1] in Cycticat
2] In Private Firms use the Shoreholders Equity.
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§3 Intensity-Based Credit Risk Modelling

Credit Ratings

@ Credit ratings measure the creditworthiness of (corporate or sovereign) debt
instruments (e.g. bonds, CDSs, CDO tranches).

e They are widely used by financial institutions and regulators for trading, pricing and risk
management.

@ They change relatively infrequently for rating stability;

e They change only when there is reason to believe that a long-term change in the
company’s creditworthiness has taken place.

@ Three major global rating agencies: Moody’s, Standard&Poor, Fitch Rating.

STANDARD
&POOR’S

FitchRatings

KNOW YOUR RISK
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§3 Intensity-Based Credit Risk Modelling

Credit Ratings

Moody’s S&P and Fitch

Aaa AAA

ha A | tment grad
A P nvestment grade

Baa BBB

Ba BB
B B

Caa cce Non-investment grade

(junk bonds)

Ca CcC
C C

Figure: Notation Systems of Credit Ratings
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§3 Intensity-Based Credit Risk Modelling

Subdivisions of Credit Ratings for Finer Rating Measure

Standard &
Moody's L0 Fitch  AM Best red|t worthmess

Aal Adt Adt aa+ |Anobligor has YERY STRONG capacityto meetits financial commitments. b differs from the
Aa2 A AR a3 |hihestrated obligars onlyin small degree.

Aad Ab Al aa-

Al At A+ a+  |A&nobligorhas STRONG capacity to meet its financal commitments but ks somewhat more

A2 A A a tothe of changes in and ecom than

A3 A I o obligors in higher-rated sategories.
Baal BBEE+ BEB+ bbb+  [Anabligor has ADEQUATE capacity to mest its finsncial commitments. However, aduerse
Baa2 BEB BEE bbb |eeonomic conditions or changing circumstances are more likely to lead to a weakened capacity of
Baz3d BEB- BEE- bhb- |the obligor to meetits financial commitments.

Bal EBE+ EBE+ bb+  |Anabligoris LESS YULMERABLE in the near term than ather lower-rated obligors. However, it
Ba? BB BB bb Faces major ongoing uncertainties and exposure to adverse business, financial, or economic
Ba3 BE- BE- b |eend i tathe obiigor's inadeq pacity to meet it financial sommitments.

BT Bt B+ b+  |Anabiigaris MORE VULNERABLE than the obligors rated B, but the obliger currently has the

capacity to mest its financial cammitments. Adverse business, financial, or econamic canditions

B2 B B [

B3 B. =3 b willikely impir the obligar's capacity or willngness to mest ts financial commitments.

Caa CCC CCC CCC |Anobigor is CURRENTLY VULNERABLE, and s dependent upon favourable business, inancial,

ep
WWR

unsalicited

MR

unsalicited
sh

MR

Expected

RD

MR

and economis conditions to meet its financial commitments.

payment,

Freliminary ratings may be assigned ta obligations pending receipt o final documentation and legal
apinions. The final rating may ditfer fram the preliminary rating

Fiating withdrawn for 1easans including: debt maturity, calls, puts, conversians, ete. o business
ressons (e changein the size of 3 debt issue), or the issuer defauls

This rating was intiated by the ratings agency and not requested by the issuer.

This rating is assigned when the agency belisves that the abiigar has selectively defaulted on 3
spacific issue or slss of abligations but it will sontinus ko mestits payment obligations on ather
issues or classes of obligations in 2 imely manner.

Na rating has been requested, or there is insufficient information on which to base arating.

— apeib yawsany —




§3 Intensity-Based Credit Risk Modelling

S&P Credit Ratings on Sovereign Debt (Sep. 2010)

Local currency debt usually has
lower credit risk than foreign
currency debt, as local currency
debt is backed by taxation power
ofthe government.

Issuer Local Currency Foreign Currency
Argentina B B
Australia AAA AAA
Belgium AA+ AA+
Brazil BBB+ BBB—
Canada AAA AAA
China A+ A+
France AAA AAA
Germany AAA AAA
Hong Kong AA+ AA+
India BBB— BBB—
Iraly A+ A+
Japan AA AA
Mexico A BBB
Netherlands AAA AAA
Russia BBB+ BBB
South Africa A+ BBB+
South Korea A+ A
Spain AA AA
Switzerland AAA AAA
Taiwan AA- AA—-
Thailand A- BBB+
Turkey BB+ BB
United Kingdom AAA AAA
United States AAA AAA
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§3 Intensity-Based Credit Risk Modelling

Discrete-time Case: Estimating Default Probabilities from Historical Default Data

@ Historical default data provided by rating agencies can be used to estimate the
probability of default (PD).
TABLE 16.1 Average Cumulative Default Rates (%), 1970-2010

Time (yrs) 1 2 3 4 5 7 10 15 20
Aaa 0.000 0.013 0.013 0.037 0.104 0.244 0.494 0.918 1.090
Aa 0.021 0.059 0.103 0.184 0.273 0.443 0.619 1260 2.59
A 0.055 0.177 0.362 0.549 0.756 1239 2136 3.657 6.019
[ Baa 0.181 0.510| 0.933 1.427 1.953 3.031 4.904 8.845 12.411
Ba 1.157  3.191 5596 8.146 10.453 14.440 20.101 29.702 36.867
B 4.465 10.432 16.344 21.510 26.173 34.721 44.573 56.345 62.693
Caa 18.163 30.204 39.709 47.317 53.768 61.181 72.384 76.162 78.993

Source: Moody’s

o It shows PD for companies starting with a specified credit rating, e.g. a company with
an initial credit rating of Baa has a probability of 0.181% of defaulting by the end of 15t
year, 0.510% by the end of 2" year, and so on.

e PD during a particular year can be calculated, e.g. probability that a bond initially rated
Baa will default during 2™ year is 0.510% — 0.181% = 0.329% (unconditional annual
default probability as seem at time 0).
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§3 Intensity-Based Credit Risk Modelling

Discrete-time Case: Average Cumulative Default Rates (1970-2010, Moody’s)
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Figure: Average Cumulative Default Rates (1970-2010, Moody’s)
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§3 Intensity-Based Credit Risk Modelling

Discrete-time Case: Average Annual Default Rates (1970-2010, Moody’s)
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Figure: Average Annual Default Rates (1970-2010, Moody’s)
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§3 Intensity-Based Credit Risk Modelling

Discrete-time Case: Unconditional/Conditional Default Probabilities

TABLE 16.1  Average Cumulative Default Rates (%), 1970-2010

Time (yrs) 1 2 3 4 5 7 10 15 20

Aaa 0.000 0.013 0.013 0.037 0.104 0.244 0.494 0.918 1.090
Aa 0.021  0.059 0.103 0.184 0.273 0.443 0.619 1.260 2.596
A 0.055 0.177 0.362 0.549 0.756 1.239 2136 3.657 6.019
Baa 0.181 0.510 0.933 1.427 1953 3.031 4.904 8.845 12411
Ba 1.157 3.191 5.596 8.146 10.453 14.440 20.101 29.702 36.867
B 4.465 10.432 16.344 21.510 26.173 34.721 44.573 56.345 62.693
Caa 18.163 30.204 39.709| 47.317 53.768 61.181 72.384 76.162 78.993

Source: Moody’s

@ The unconditional default probability is PD as seen at time 0.

@ e.g. probability of Caa bond defaulting during 3@ year is
39.709% — 30.204% = 9.505%.

@ Probability that the Caa-rated bond will survive until the end of 27 year is
1 —30.204% = 69.796%.

e PD during 3™ year conditional on no earlier default is 9.505%/69.796% = 13.62%.
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§3 Intensity-Based Credit Risk Modelling

Continuous-time Model: Default Intensity/Hazard Rate

o Default intensity (or hazard rate') is PD over a short period given no earlier
default, measuring instantaneous intensity of default (or bankruptcy, credit) events.

@ Denote A(t) as the default intensity at time ¢, then, PD between times t and t + At,
as seen at time t, conditional on no earlier default within time [0, #, is
approximately A(t)At, i.e.

Prit<t" <t+At|tF>1t
At = lim DAEST SEHEAT 2 1

t>0, 3
At—0 At - ©)

where 7* is a random default time (totally unpredictable, complete surprise:
stopping time).

@ We have the approximation

Prit<t" <t+At[T" >t} ~ At (4)

"Hazard rate is more general than default intensity. When the information filtration is only about
default time, then, they are equivalent (Duffie, 2011, p.14).
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§3 Intensity-Based Credit Risk Modelling

Continuous-time Model: Default Intensity/Hazard Rate

@ The cumulative survival probability by time t is given by

Pric" > t} = & Jo 15195, (5)

@ The cumulative default probability by time t is given by

Fre(t) :==Pr{T* <t} =1— e—ﬁ] A(s)ds ©)

@ The default arrival is an inhomogeneous Poisson process of rate A;.
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§3 Intensity-Based Credit Risk Modelling

Continuous-time Model: Default Intensity/Hazard Rate

80 T T T T T

70 | .
60 | .
50 + .
40 | % .
30 .

20 | 1

Defaults and default intensity

10 t 1

, LAy

1975 1980 1985 1990 1995 2000 2005
Year
Figure: Total across firms of estimated default intensities (line), and the number of defaults in each year (bars),
1980-2004 (Duffie et al., 2007, p.651)
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§3 Intensity-Based Credit Risk Modelling

Continuous-time Model: Default Intensity/Hazard Rate v.s. Default Probability Density

@ The default probability density (Hull and White, 2000) is given by
4
dt
which means f.+ (t)At is approximately the unconditional PD between times t and
t+ At as seen at time 0, i.e.

for (1) 1= — Fee (1) = M)~ Jo Msyas @)

Prit<t" <t+At} = f (1AL (8)
and links to hazard rate via e (t)
Alt) = —L
0 =1"F@ ©)
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§3 Intensity-Based Credit Risk Modelling

Continuous-time Model: Default Intensity/Hazard Rate v.s. Default Probability Density

@ Average hazard rate within time period [t, T] is defined by

Ty i S AN 2o (10)
then,
Pr{t* <t} =1— e Moaxt, (11)

@ For constant hazard rate, i.e. A(t) = A, then,

Prit" <t} =1—e M
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§3 Intensity-Based Credit Risk Modelling

Jarrow and Turnbull (1995) Model: Default Arrival of Homogenous Poisson Process

Example (Jarrow-Turnbull Model)

Suppose that the hazard rate A(t) is a constant 1.5% per year.
@ PD by the end of 15! yearis 1 — e~ 0-015x1 — { 49%,
PD by the end of 2™ year is 1 — e=0-015%2 — 2 96%,

°

@ PD by the end of 3@ | 411 | 5! years are similarly 4.40%, 5.82%, 7.23%.

@ Unconditional PD during 4! year is 5.82% — 4.40% = 1.42%.

@ PD in 41 year, conditional on no earlier default, is 1.42%/ (1 — 4.40%) = 1.49% ~ 1.5%.

60%

50% PD

40%

30%

20%

10%

0%
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§3 Intensity-Based Credit Risk Modelling

Annual Defaults of Moody’s-rated U.S. Firms, 1970-2008
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Figure: The peak in 1970 represents a cluster of 24 railway defaults triggered by the collapse of Penn Central
Railway on June 21,1970. The fallout of the 1987 crash is indicated by the peak in the early 1990s. The burst of
the internet bubble caused many defaults during 2001-2002. From a trough in 2007, default rates increased
significantly in 2008. Source: Moody’s Default Risk Service.
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§3 Intensity-Based Credit Risk Modelling

Annual Percentage Default Rate (%) for All Rated Companies, 1970-2010

Year Default Rate Year Default Rate Year Default Rate
1970 2.641 1984 0.927 1998 1255
1971 0.285 1985 0.950 1999 2214
1972 0.455 1986 1.855 2000 2.622
1973 0.454 1987 1.558 2001 3.978
1974 0.275 1988 1.365 2002 3.059
1975 0.360 1989 2.361 2003 1.844
1976 0.175 1990 3.588 2004 0.855
1977 0.351 1991 3.009 2005 0.674
1978 0.352 1992 1.434 2006 0.654

| 1979 0.087 | 1993 0.836 2007 0.367
1980 0.343 1994 0.614 2008 2.028
1981 0.163 1995 0.935 [2009 5.422 |
1982 1.036 1996 0.533 2010 1.283
1983 0.967 1997 0.698

Source: Moody’s.
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§3 Intensity-Based Credit Risk Modelling

Cox (1955, 1972) Model: Defaults Arrival as A Doubly Stochastic Poisson Process

@ Cox (1955, 1972) models, or doubly stochastic Poisson processes, are widely
used for modelling event arrivals and survival analysis.

@ They are based on conditional independence (doubly stochastic) assumption, i.e.,
default times follow independent Poisson processes given the intensities (Das
et al., 2007, p.98).

@ The cumulative survival probability by time t is
t
Prit* >t} =E {effo )‘(s)ds} : (12)

where the intensity A; is stochastic and independent of default.
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§3 Intensity-Based Credit Risk Modelling

Recovery Rate

@ The recovery rate of a bond is usually defined as the price of bond immediately
(30 days) after default as a percentage (averagely 40%) of its face value.

@ Some claims have priorities over other claims and are met more fully, which depends
on the bond holders’ seniority.

TABLE 16.2 Recovery Rates on Corporate Bonds and Bank
Loans as a Percent of Face Value, 1982 to 2010, Issuer

Weighted
Average

Class Recovery Rate (%)
First lien bank loan 65.8
Second lien bank loan 29.1
Senior unsecured bank loan 47.8
Senior secured bond 50.8
Senior unsecured bond 36.7
Senior subordinated bond 30.7
Subordinated bond 31.3
Junior subordinated bond 24.7

Source: Moody’s
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§3 Intensity-Based Credit Risk Modelling

Modeling Recovery Rates

@ Recovery rate can be modelled by Beta distribution, X ~ Beta(«, ) with PDF

T(@+p) o1 —1
fx(x;a, B) = ——2x 11 —x)P~1 xe]0,1], (13)
(xia.B) = Fgrp * ) 0. 1]
where shape parameters «, f > 0, and I’ is Gamma function, with mean and
variance
25
2.0p
[
mx = m, (14) él‘sf o L
my(1 — mx)
Vy = ———=. 15 e
s e (15)
0.5}

*80 0.2 04 0.6 0.8 1.0

Shibo Bian (SUFE) Lecture: Financial Modelling



§3 Intensity-Based Credit Risk Modelling

Recovery Rates & Default Rates

@ Recovery rates are significantly negatively correlated with default rates (Altman
et al.,, 2005).

o A bad year for default rate is usually doubly bad, because it is accompanied by a low
recovery rate.

@ Moody'’s best-fit estimate for 1982-2007 period is
Average Recovery Rate = 59.33 — 3.06 x Non-investment Grade Default Rate.

@ The correlation between the average recovery rate in a year and the non-investment
grade default rate is about 50%.

@ Jointly modelling for recovery rates and defaults rates based on shared covariates:
Chava et al. (2011).
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§3 Intensity-Based Credit Risk Modelling

Pricing Corporate (Defaultable) Bond

@ Present value (at time 0) of defaultable zero-coupon bond which pays $1 at
maturity T is

v(0,T)=p(0,T) <R+ (1 —=R)Pr{T* > T}>

where

e p(0, T) is present value of default-free zero-coupon bond which pays $1 at maturity T;
e R € [0, 1] is constant recovery rate (say, 40%) (which depends on seniority);
o risk-free interest rate and default are assumed to be independent.

@ Risk premium to compensate investors for taking default risk is

p(0, T)—v(0, T)=p(0, T)(1 —R)Pr{t* < T}. (16)

@ If R =0 (no money is recovered if company defaults within period of [0, T]), then,

v(0,T)=p(0, T)Pr{z* > T}. (17)
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§3 Intensity-Based Credit Risk Modelling

Credit Default Swaps (CDS)

@ CDS was invented by economist Blythe Masters from JP Morgan in 1994.

@ CDS buyer acquires protection or insurance from the seller against a credit event
(i.e. default) by a particular company or country (i.e. reference entity).

@ Premium is known as credit default spread (i.e. CDS spread), which is paid for life
of contract or until default.

@ CDS is a kind of insurance against credit (default) risk.
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§3 Intensity-Based Credit Risk Modelling

CDS’ Global Market Size

Market Value of Global Outstanding
CDS Contracts

USStr | g Market value (LHS) %
6l Per cent of global OTC derivatives’ market value (RHS) 18
5 15
4 12
3 9
2 6
1 3
0 0
2004 2005 2006 2007 2008 2009 2010 2011
Source: BIS
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§3 Intensity-Based Credit Risk Modelling

Example of CDS Cash-flow Structure

@ CDS buyer A pays a premium (credit spread) of 90 bps per year on face value
N =$100 million to CDS seller B, for 5-year protection against default loss of
reference entity X.

@ If there is a default at time Ty, 0 < Ty < 5, CDS buyer A has the right to sell bonds
with a face value of $100 million issued by company X for $100 million to CDS

seller B.
90 bps per year
Default Default
Protection Protection
Buyer, A Seller, B
if there is a default by reference

entity, payoff =100(1-R)

Recovery rate, R, is the ratio of bond value issued by reference entity X
immediately after default to face value of bond.
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§3 Intensity-Based Credit Risk Modelling

CDS Cash-flow Structure

@ Protection buyer purchased a CDS at Protection buyer
time fy and makes regular premium bty tits tg e
payments N x s; at times 1 1 1 1 1 1 l 4
b l3,ly...

@ If reference entity suffers no credit to t, g
event, then, buyer continues paying Protection seller
premiums until the end of contract at
time T = ty. Protection buyer

otttz t s R

@ If reference entity suffered a credit Vbl * 4

event, say, at Ty = &5, then, protection
seller pays buyer for the loss, and
buyer would cease paying premiums

v

to tn

to seller Protection seller
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§3 Intensity-Based Credit Risk Modelling

Pricing CDS

From protection sellers’ point of view (ignoring counterparty risk):

@ Expected premium:
n
Premium Leg = E© Z soNe "M1{t; < T} |, (18)
i=1
where s; is CDS spread at today t = 0 when CDS contract is created.
@ Expected loss:

Loss Leg = EQ [(1 — R)Ne "1 {7} < T}] . (19)

@ Today t = 0, set CDS’ PV = expected premium — expected loss =0, then,

_R) [T eruf,
L O e -
Zi:1 p(0, ;) Pr{T)*( >t}

where f;; (u) is the density function of default time .
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§3 Intensity-Based Credit Risk Modelling

CDS Protection Buyers and Sellers

Pension funds COTPS- _ Misc Mutual funds Pension funds
Mutual funds 5% % 2% Misc.
i Banks and Corps. 1%

2%

- dealers Banks and
(Trading dealers
portfolios) (Trading
33% portfolios)
Hedge fu;lii; 39%
(1}
Hedge funds
28%
Loan
portfolios
Insurers —— 7% Loan
18% portfolios

20%

Figure: Estimated breakdown of CDS buyers (left) and sellers (right) of protection, Mar 2007 (Source: BoA)
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§3 Intensity-Based Credit Risk Modelling

CDS Spread - “Fear Gauge" of Credit Risk

(In basis
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Source: Bloomberg L.P.
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§3 Intensity-Based Credit Risk Modelling

CDS & Bond Yields

@ Credit spread is the premium paid by protection buyer to seller, i.e. extra rate of
interest per annum (quoted in basis points) required by investors for bearing credit
risk, e.g.

@ CDS spread,

@ Bond yield spread, the amount by which the yield on a corporate bond exceeds the
yield on a similar risk-free bond (e.g. US Treasury bond).

Example (Hedging & Arbitrage on Credit Risk)

A portfolio consists of a 5-year corporate bond yielding 7% per year and a long position in a
5-year CDS costing 200 bps (2%) per year, for the same reference entity.

@ |t is approximately a "risk-free" bond earning 5% per year, which is the implied risk-free rate
in normal markets.

@ In normal markets, what are arbitrage opportunities when real risk-free rate is 4.5%? what if
it is 5.5%7? 4
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§3 Intensity-Based Credit Risk Modelling

iBoxx Bond Spread Indices 2006-2008

Spread {bp)

400

Time Series of iBoxx Index Spread from 0110312006 to 27106/2008
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Figure: Bond Spread Indices 2006-2008 from Markit
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§3 Intensity-Based Credit Risk Modelling

Default Intensity Implied from Credit Spreads

@ Credit spread can be considered roughly to be a market’s expected average loss
rate (loss per time unit).

@ Implied average risk-neutral default intensity over life of bond within time [0, T] is
approximately (Hull et al., 2005)

Ao, = 1S<_T/);" (21)
where
e s(T) is (continuously compounding) credit yield spread over risk-free rate for a maturity
of T,i.e.
s(T) =y(T) —r(T); (22)

e 0 < R < 1isrecovery rate;

e average hazard rate within time period [t, T] is defined by

(23)
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§3 Intensity-Based Credit Risk Modelling

Default Intensity Implied from Credit Spreads

@ If credit spreads are known for a number of different maturities, term structure of
hazard rate can be bootstrapped.

Example (Term Structure of Default Intensity Implied from CDS Spreads)

Suppose that CDS spread for 3-, 5-, and 10-year instruments is 50, 60, and 100 basis points, and
expected recovery rate is 60%.

@ Average hazard rate over 3 years is approximately 7\[0'3] =0.005/(1 —0.6) = 0.0125.
@ Average hazard rate over 5 years is approximately 7\[0'5] = 0.006/(1—0.6) = 0.015.
@ Average hazard rate over 10 years is approximately /_\[0,10] =0.01/(1—0.6) = 0.025.

@ From this, we can estimate that the average hazard rate between year 3 and year 5 is
Aps) = (5% 0.015 — 3 x 0.0125) /2 = 0.01875.

@ Average hazard rate between year 5 and year 10 is
5\[5,10] = (10 x 0.025 — 5 x 0.015) /5 = 0.035.
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§3 Intensity-Based Credit Risk Modelling

Real-World vs Risk-Neutral Default Probabilities

@ Default probabilities backed out from bond prices or CDS spreads are risk-neutral
default probabilities (conventionally denoted by Q).

@ Default probabilities backed out from historical default data are real-world (i.e.
natural or physical) default probabilities (conventionally denoted by IP).

@ For the same name and time to maturity, risk-neutral default probability are usually
much higher than real-world default probability.

o Difference between the two is particularly larger during crises due to investors’ “flight to
quality”.
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§3 Intensity-Based Credit Risk Modelling

Real-World vs Risk-Neutral Default Probabilities

@ Real-world default probabilities: calculate 7-year hazard rates from Moody’s
default data (1970-2010), Table 16.1.

@ Risk-neutral default probabilities: estimate average 7-year hazard rates implied
from bond prices of Merrill Lynch data (1996-2007).

@ Assume risk-free rate equal to 7-year swap rate minus 10 bps, and recovery rate is
40%.
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§3 Intensity-Based Credit Risk Modelling

Real-World vs Risk-Neutral Default Probabilities

Rating Historical Hazard Rate (% Hazard Rate frombonds | Ratio Difference
per annum) (% per annum)
Aaa 0.03 0.60 17.2 0.57
Aa 0.06 0.73 11.5 0.67
A 0.18 115 6.5 0.97
Baa 044 213 48 1.69
Ba 223 4.67 21 244
B 6.09 8.02 1.3 1.93
Caa 1352 18.39 14 4.87
1 0.05993 — 0.05308
- In(1-0.01239) = 0.0018 4 = 00115
- In(1-P{r*<T}) = _TV(T)—r(T)
At == Aoy “T1_R
T T T=7,R=40%
P{r*<T}=1-g 0T Aory = IS(T;

Moody’s default data  Merrill Lynch bond-price data

* The ratio of the hazard rate backed out of bond prices to the hazard rate
calculated from historical data is high for investment grade bonds, and
tends to decline as the credit quality declines
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§3 Intensity-Based Credit Risk Modelling

Risk Premiums Earned By Bond Traders

Rating Bond Yield Spread of risk-free Spread to Extra Risk
Spread over | rate used by market compensate for Premium
Treasuries over Treasuries default rate in the (bps)

(bps) (bps) real world (bps)

Aaa 78 42 2 K/

Aa 86 42 4 40

A 11 2 1 58

Baa 169 42 26 101

Ba 322 42 132 148

B 523 42 355 126

Caa 1146 42 759 345

Expected 1-year default loss (real-world probability) = 1-year probability of default

(calculated from the historical hazard rate from Moody’s ,Table 16.1) multiplied by
(1-R) where recovery rate R=0.4
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§3 Intensity-Based Credit Risk Modelling

Why Extra Risk Premium Exists?

@ Corporate bonds are relatively illiquid and need additional compensation.

@ Subjective default probabilities of bond traders may be much higher than the
estimates from Moody'’s historical data.

@ Bonds do not default independently of each other, which leads to systematic risk
that cannot be diversified away; so bond traders require an excess expected
return for bearing this risk.
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§3 Intensity-Based Credit Risk Modelling

Which World Should We Use?

@ We should use risk-neutral estimates for asset pricing, e.g. valuing credit
derivatives and estimating the present value of default cost.

@ We should use real-world estimates for risk management, e.g. calculating VaR
and scenario analysis.
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§4 Rating-Based Credit Risk Modelling

Historical Credit Rating Transition

History of S&P Sovereign Debt Credit Ratings by Country
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Source: IMF {April 2012 “Global Financial Stability Report”
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Dynamics of Credit Rating Transition

@ Jarrow-Lando-Turnbull model (Jarrow et al., 1997): the dynamics of credit rating
transitions is represented by a discrete-time Markov chair?.

@ To describe the dynamics of credit ratings quantitatively, let {X;}:—o 1.2, ..
represent (random) credit rating of a bond at time ¢, where X; is a
time-homogeneous discrete-time Markov chain on finite discrete-state space

S={1,2,.... K, K+1},

where
o 15! state 1 represents the highest credit rating (e.g. AAA in S&P rankings);
e K state K represents the lowest credit rating (e.g. C in S&P rankings);
o the last state K + 1 represents default or bankruptcy, i.e. absorbing state which means
once default, it will stay in the state of default forever;
@ to be consistent in notation, state 0 (excluded from S here) represents default-free.

@ Default is modelled as the first time of this discrete-time Markov chain that hits the

absorbing state (default state) K + 1.
2Similar idea was also adopted by Google co-founder Larry Page for his PageRank, Google’s

most well-known search ranking algorithm.
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Natural Probability

@ (K+1) x (K+1) time-homogeneous one-step transition matrix is

A1 o Ak J1,K+1
Qtt+1)=Q:= - : : (24)
Ak 9Kk 9K K+1
0o -~ 0 1

where

qij(t,t+1):=Pr{Xyy =j| Xe=i}=q;, ijeS Vi=01,2 .

K+1
G €01, Vi#j  qi=1- Y ay Vi
J=1#
are actual (or natural) transition probabilities in one unit time (say, 1 year), and
absorbing state for default is in the last row.
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§4 Rating-Based Credit Risk Modelling

arrow-Lando-Turnbull Model: Estimating the Natural-Probability Transition Matrix from Real Data

Credit Rating AAA AA A BBB BB B ccc/c D NR
AAA 8744 737 046 009 006 0 0 0 4.59
AA 0.6 86.65 7.78 0.58 0.06 0.11 0.02 0.01 4.21
A 0.05 2.05 8696 5.5 043 0.16 0.03 0.04 4.79
BBB 0.02 021 385 8413 439 077 0.19 0.29 6.14
BB 0.04 008 033 527 7573 736 094 12 9.06
B 0 0.07 02 0.28 521 7295 423 5.71 11.36
ccce/c 0.08 0 031 039 131 9.74 46.83 28.83 12.52

Figure: Global Average One-Year Transition Rates (%), 1981-2004, Source: Standard & Poor

@ Estimate the transition matrix Q by eliminating Not-rated (NR) data:

Rating AAA AA A BBB BB B cce/c D

AAA 0.916369734  0.077237476  0.004820792  0.000943198 0.000628799 0 0 0

AA 0.006262394  0.904394113  0.08120238  0.006053648 0.000626239 0.001148106 0.000208746 0.000104373
A 0.0005251 0.021529091  0.913253518  0.057760975 0.004515858  0.001680319  0.00031506  0.00042008
BBB 0.000213106  0.002237613  0.041022909  0.896430474 0.046776771 0.008204582 0.002024507 0.003090037
BB 0.000439802  0.000879604 0.003628367  0.057943925 5305 0.080923584 0.013194063
B 0 0.000789622  0.002256063  0.003158488 58770446 0.822899041 0.064410603
CCC/C 0.00091439 0 0.003543262  0.004457652 0.01497314  0.111327009 0.329523374

D 0 0 0 0 0 0 0 1

Figure: Estimated Transition Matrix Q
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Term Structure of the Natural Default Probability

@ 1/ is denoted as default time (absorption state) of X; with the current credit rating
Xo=1,i.e.
T=inf{t>0: X =10 X; =K+ 1} (25)

@ Natural default probability within time T for the current j-rated bonds is
Pr{t/ < T}=qik:1(0,7), (26)
where gj x+1(0, T) is from the T-step transition matrix

Q0,7 =Q" =q". 27)

Shibo Bian (SUFE) Lecture: Financial Modelling



§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Term Structure of the Natural Default Probability

Natural Default Probabilities for Investment Grades by One-Year Transition Matrix (Discrete Case)
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Figure: 30-Year Term Structure of Natural Default Probabilities for Investment Grades
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Risk-Neutral Probability

@ For the rating process after risk neutralization, X;, assume its associated
(K4 1) x (K + 1) one-step transition matrix is now time-non-homogeneous, i.e.

Galtt+1) o Gkt t+1)  FGxer(tt+1)
Q(t t+1):= i - o : i : ,
Gea(tt+1) - Qr(tt+1) Geiea(tt+1)
0 0 1
where
Gjtt+1):=Pr{Xys=j| Xe =i}, ijeS, Vt=012.; (28
K+1
Gjtt+1) 0], Vi#j  Gitt+1)=1— > g tt+1), Vi
j=1

are risk-neutral transition probabilities in one unit time.
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Credit Rating Transition under the Risk-Neutral Probability

@ Assume risk-neutral transition probabilities can be transferred from the
corresponding actual transitional probabilities by

f],'vj(t,t+1) = ﬂ/'j(t,f+1)q,"j, Vi #£ i, (29)
where

@ g, is actual transitional probabilities of the observed time-homogeneous Markov chain
Xt;
o m;;(t t+ 1) are risk premium adjustments.

@ For simplicity, further assume
ﬂ/'j(t,t+1)=7'[,'(t,f+1), Vj # i, (30)
which are deterministic functions of time t such that g; ;(¢,t + 1) € [0, 1] for all J, j.

@ X; and spot risk-free interest rate process are assumed to be mutually
independent under risk-neutral measure.
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Risk-Neutral Default Probability

e 7/ is denoted as default time (absorption state) of X when X =/, i.e.

T=inf{t>0: X =i, X =K+1}. (31)

@ Risk-adjusted survival probability is

K

Pz > TH=> Gk(0.T) =1—Giky1(0, T), (32)
k=1

where §; x+1(0, T) can be obtained from time-non-homogeneous T-step
transition matrix

QO, T)=0Q(0,1)*Q(1,1+ 1) %...xQ(T —1,T). (33)
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Pricing Defaultable Bonds

@ Present value of defaultable zero-coupon bond of i-class credit rating which
needs pay $ 1 at maturity T is

v,(o,T):vo(o,T)(R+(1—R)ﬁr{f,*>T}), i=12..K (34

where
@ (0, T) is present value of a default-free zero-coupon bond which pays $1 at maturity
T;
@ R € [0, 1] is constant recovery rate (say, 40%);

o risk-free interest rate and default are assumed to be independent.
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Numerical Implementation

@ Assume there are only 3 states of creditworthiness: / = Investment Grade, J = Junk Grade,
D = Default (absorbing), with one-year transition matrix

0.90 0.05 0.05 /
Q= 0.10 0.80 0.10 J .
0 0 1 D

@ Given the associated risk-free interest rate and credit spreads by
ro1 _( 0.08 Spo1 ) 0.01 sy01 \ _ [ 0.02
e ) \ 009 )"\ 50 /) \ 0015 )"\ sy /) \ 003/
@ Assume there is no correlation between credit rating migration and interest rate.

@ Market traded prices of defaultable zero-coupon bonds of maturities T = 1, 2 for ratings /, J
are observed as

1 1 1
B[(0,1) = m, B[(O,Z) = WF BJ(O,1) = m, BJ(O,Z) = W
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Numerical Implementation

1
@ Payoff vectoris C := 1 where recovery rate R is assumed to be R = 40%.
R

@ If the current (at time ¢ = 0) state is /, then, we transform natural probabilities Q; into
risk-neutral probabilities Q; by adjustment 7,

0.90 1-0.1077/(0, 1)
Q= 005 | —Q= 0.0571,(0,1)
0.05 0.057,(0, 1)

@ We can calibrate risk-premium adjustment r;, by making the expected value of discounted
cash-flows equal to the traded price of bond in market, i.e.

1-0.107(0, 1)

I P, 11
B(0,1) = 1+rmc Q ie. @_W( 1.1 04) 0.057,(0,1)
0.057,(0, 1)

giving 7t;(0, 1) = 0.30581.
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§4 Rating-Based Credit Risk Modelling

Jarrow-Lando-Turnbull Model: Numerical Implementation

@ Similarly, for calibrating 7r,, we have

1 ’ 1 0.107t4(0, 1)
_ T, i o _
By(0,1) = 1+rmc Q ie 5 1.08( 11 04 ) 1-0207y(0,1)
0.107,(0, 1)
(35)
giving 7t,(0,1) = 0.30303.
@ Implied risk-neutral transition matrix within the first year is
0.9694 0.0153 0.0153 /
Q(0,1) = 0.0303 0.9394 0.0303 J (36)
0 0 1.00 D
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model: A View from Corporate Finance

@ Information about equity prices is more up-to-date than credit ratings.

@ Merton’s model (Merton, 1974) relates credit risk of a (limited-liability) firm to its
capital structure (assets and liabilities), and regards equity as an option on firm
value.

@ Assumptions:
@ Firm is funded by equity and debt, i.e.
Vi = E; + B, t>0,
where V; is firm value (total value of firm’s assets), E; is equity value, B; is debt value.

@ Debt is a zero-coupon bond with a constant debt repayment D at maturity T.

© V; under risk-neutral measure follows SDE
dV;
% = rdt+oydW;,
Vi

where oy is volatility of firm value.
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model

@ By capital structure and bankruptcy law:

Default State Firm Value Debt Value Equity Value
no default Vr>D D Vr—D
default Vr<D Vr 0

@ Then, equity value E7 (i.e. payment to shareholders at time T) is

Er = max{VTfD,O}.

@ Shareholders are long a call option on its asset value with strike D and maturity T;
debtholders are short a put option with same strike and maturity.

Shibo Bian (SUFE) Lecture: Financial Modelling



§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model

Firm's Values Simulated by Monte Carlo Method
16 T T T T T T T

Firm's Value

}0000000000000000000000bBBARGTT

Debt Barrier
1 1
0.1 0.2 0.3 0.4 0.5 06 0.7 08 09 1.0

r=5%,00=02D=6,V,=8N=100

Financial Modelling
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model

@ By B-S formula, firm’s equity price today is
Ey = Vo@(d;) — De T (),
where

2
|n%+(r+"2—V)T

di =
‘ o VT
2
. n%+(r-F)T , _
= =d —oyVvT.
2 U’Vﬁ 1 v

@ Risk-neutral PD is
PI’{ VT < D} = (I)(*dz).

@ Value of defaultable zero-coupon bond today is

Bo = Vo — Eo = Vo@(—d1) + De"T<I>(d2).

Shibo Bian (SUFE) Lecture: Financial Modelling



§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model

Surface for Zero Coupon Bond Value B(V,t) as a Function of Firm Value V and Time to Maturityt by Merton Model

Bond Value B(V7))

Firm Value V
: s 0 Time to Maturity

r=5%,00=02,D=6
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model: Distance-to-Default (DtD)

@ Distance-to-Default (DiD) is the number of standard deviations of firm’s value that
must change for default to be triggered T years in future, i.e.

|n%+(r—1§) T
(T\/ﬁ ’

DD :=dp, =

@ The smaller the value of DtD, the larger the probability of default.

@ DtD is essentially a volatility-corrected measure of leverage (Duffie et al., 2007,
p.639), an important factor (accounting measure) for forecasting default (Bharath
and Shumway, 2008).
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model: Distance-to-Default (DtD)

@ Estimated default intensities are strongly monotonically decreasing in DtD: a 10% reduction
in distance to default causes an estimated 11.3% proportional increase in default intensity
(Duffie et al., 2007, p.649).

0.05 T T T T T T T T T T
8
o 004
Q
c
o
£ 003
E
3 002
o
o
2 001
[$)
c
[
=}
g 0
[T
~0.01 n n n n n n n n n n

-05 0 05 1 15 2 25 3 35 4 45 5
Distance to default

Figure: Empirical one-year default frequency as a function of DtD with kernel smoothing
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§5 Equity-Based Credit Risk Modelling

Merton’s Structure Model

@ Firm’s value V; is unobservable, its initial value V4 and volatility o, need
calibration.

@ By /to’s Lemma,

oy = = ov Vo,

aV
where 2 av = ®(d,), and volatility of equity price o can be estimated (Jones et al.,
1984).

@ Two equations of (Vy, oy) enable V, and oy to be determined (implied) from Eg
and og.
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§5 Equity-Based Credit Risk Modelling

Numerical Example of Merton’s Structure Model

Example (Merton’s Structure Model)

A company'’s equity Eq is $3 million, volatility of equity o¢ is 80%. Risk-free rate r is 5%, debt D is
$10 million, time to maturity T is 1 year.

@ Solving the two equations (via Excel ‘Solver’) gives Vy = 12.40, oy = 21.23%.

@ 1-year PDis
PDr_1 = ®(—db) = 12.7%.

@ The current implied market value of debt (zero-coupon bond) is
By = Vp— Ey =12.4—3 = 9.40.
@ Present value of promised payment is 10 x e~ 5%*1 = 9,51,
@ Expected loss percentage is
L% = (9.51 —9.40)/9.51 = 1.2%.
@ Recovery rate is R = 91%, implied from equation L% = PDr_y x (1 — R).
@ 1-year DiD = 1.14.
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§5 Equity-Based Credit Risk Modelling

Industrial Applications of Merton’s Structure Model

@ KMV model
© JP Morgan’s CreditMetrics (Gupton et al., 1997)
© Basel2,25,3

© CreditMetrics’ CreditGrades (Finkelstein et al., 2002)
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§5 Equity-Based Credit Risk Modelling

Imperfections of Merton’s Structure Model

@ Default can only occur at maturity 7, no matter the behaviour of asset value before
T.

© Capital structure is too simple: e.g. debt is a simple zero-couple bond.

© Default can be predicted with increasing precision as time passes, which is due to
the path continuity of geometric Brownian motion.
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§5 Equity-Based Credit Risk Modelling

Extensions of Merton’s Structure Model: First-passage Time Models

Example (Black-Cox Model)
@ Black and Cox (1976) allows default time be any time within (0, T]:

280 T T T T T T T T T

_Vlif

240] [l Ve : g

No Default

\ Default
5 h

0 1 2 3 4 5 6 7 8 9 10
Time (y)
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§5 Equity-Based Credit Risk Modelling

Extensions of Merton’s Structure Model: First-passage Time Models

Example (Black-Cox Model)

@ Default time is defined by
™ = inf{t>0| v, < D},
i.e. the first-passage time hitting the continuously-monitored default barrier D < Sy.

@ Cumulative survival probability by time T at time 0 is

27 1
Pr{c* > T} = ®(dy) — (%) U D(ch).

@ Other first-passage time models: time-dependent barrier of Black and Cox (1976),
stochastic barrier of Kim et al. (1993), see also Fischer et al. (1989); Leland
(1994).
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§6 Modelling Dependent Defaults

Correlation of Returns

1
—— SPX-NKY Daily Returns - = = SPX-NKY Weekly Returns
08 '\ A A\ Py i b
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0.4 -

0.2 -

0

-0.2

-0.4
Jan-00 May-01 Sep-02 Feb-04 Jun-05 Nov-06 Mar-08 Aug-09 Dec-10 Apr-12

Figure: Historical correlation of daily and weekly returns between S&P500 and Nikkei225 over a 3-month
rolling window since 2000
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§6 Modelling Dependent Defaults

Dependent Defaults via Correlation

@ Given a time horizon T, default-event correlation between two names is the correlation
between default indicators 1{t; < T} and 1{tj < T}, i.e., Pearson correlation coefficient

E []1{-{1* < TH{%g < T}] ~E []1{'(1* < T}] E [Jl{r; < T}]
\/(]E [ﬂ{r; < T}Z] -E [n{rf < T}]Z) (]E [Il{r; < T}Z] -E []1{12* < T}]Z)
_ p12(T) — p1(T)p2(T) ’
VP (1P () e(T) (1 - pa(T))

p12(T) =

where marginal default probabilities
p1(T) = 1E[]1{r1* < T}], p2(T) = ]E[]l{rz* < T}],
and joint default probability
pra(T) i= IE[I[{T;‘ < Tz < T}].

@ It only depends on the first two moments.

@ For empirical analysis by S&P, see De Servigny and Renault (2002).
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§6 Modelling Dependent Defaults

Examples of Bivariate Uniform Distribution 2/[0, 1]°: Dependent But Zero Correlation

Implied t-Student C;:1 pzofkemel in Space [0,1]2 Implied t-Student C\',:2 pzofkernel in Space [0.1]2

P =S 0 °
0 02 04 06 08 1 0, 02 04 06 08 1
uoup,1] ‘L uoup]

—kernel in Space [0,1]2

Implied t-Student ct p:D—kemeI in Space [D,].]2 Implied t-Student C:,:s o

0,

vau,1]

02 04 06 08 1 0 02 04 06 08 1
u 0Uo,1] u 0U,1]

Figure: Zero-correlation Dependent Bivariate Uniform Distributions by t-student Copula of 5000 Samples
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§6 Modelling Dependent Defaults

Examples of Bivariate Uniform Distribution /[0, 1]?: Different Dependency Structures

Implied Archimedean C’;(fzo)fkemel in Space [0,1]2 Implied Archimedean C:S)fkernel in Space [0,1]2

0.4 0.6 0.8 1 0.4 0.6
u0up,1] ¢ u0up,1]
Implied Archimedean C:ig)o—kernel in Space [Cl.l]2 Implied Archimedean C:i?—kemel in Space [0.1]2
1 o
%
X
0.8 x
« x
— X X x
g 0.6 X
=)
S o4 % 5
0.2
0 "
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
uoup,1] uoup,1]

Figure: Dependent Bivariate Uniform Distributions by Archimedean Copula of 5000 Samples

Shibo Bian (SUFE) : Financial Modelling



§6 Modelling Dependent Defaults

Examples of 3D Uniform Distribution /[0, 1]°: Different Dependency Structures

Figure:
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§6 Modelling Dependent Defaults

Dependent Defaults via Copulas

@ Copulais a multivariate probability distribution for which marginal probability
distribution of each variable is uniform.

@ Theoretical foundation, Sklar's Theorem (Sklar, 1959) states that, any multivariate
joint distribution can be written in terms of univariate marginal distribution functions
and a copula which describes the dependence structure between variables.

@ Recommend books:

@ An Introduction to Copulas (Nelsen, 2006)
@ Copula Methods in Finance (Cherubini et al., 2004)
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§6 Modelling Dependent Defaults

Dependent Defaults via Copulas: The Portfolio Loss Distribution

@ For a portfolio of n defaultable bonds, denote 7/ as the default time of i bond,
then, the total number of defaults within time period [0, T] is

n
Nr=3 Ui < T}

i=1

where default times {7*};—1.2, could be dependent.

02k
=
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- : : o |
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Figure: Distribution of default number for different p, homogenous A = 5%, T =1, n = 300, 10000 samples
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§7 Pricing Collateralized Debt Obligation (CDO)

Basis of Asset-Backed Securities

@ Structured finance was initially developed by US banking world in early 1980s (in
mortgage-backed-securities (MBS) format), in order to reduce regulatory capital
requirements by removing and transferring risk from balance sheet to other
parties®.

o Asset-backed securities (ABS)* and MBS contracts are not yet standardized.

@ However, there are certain features that emerge in virtually any ABS deal, the
most important of which are

@ default risk,
@ loss-given-default (LGD), or recovery rate,

© prepayment risk (due to the amortization of principal value).

@ Reality shows negative correlation between default and prepayment.

3However, some counter-examples have been found in Acharya et al. (2013) that the motivation
of securitization (for asset-backed commercial papers) is not necessary to remove and transfer risk
but to take more risk due via implicit guarantees.

“Workshop on ABS by Prof. Giddy at NYU: http:/giddy.org/abs-hypo.htm
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§7 Pricing Collateralized Debt Obligation (CDO)

Basis of Asset-Backed Securities: Outstanding and Issuance of US/EU Securitisation

Chart 1: US securitisation outstanding
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Chart 3: US securitisation issuance
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Chart 2: European securitisation outstanding
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§7 Pricing Collateralized Debt Obligation (CDO)

Asset-Backed Security (ABS)

@ ABS security is created from cash
flows of financial assets (such as
loans, bonds, credit card receivables, ABS
mortgages, auto loans).

. Asset | Senior tranche
@ A portfolio of assets (such as B Principal: $75 million
. . S
subprime mortgages) is sold by the - Return = 6%

originators of assets to a special
purpose vehicle (SPV), and cash flows
from assets are allocated to tranches.

Mezzanine tranche
—{ SPV |— Principal: $20 million

@ Each tranche is defined in terms of Return = 10%

upper (detachment) and lower

(attachment) points representing the
percentage of total notional. Assetn
Equity tranche
@ Cash flows are allocated to tranches Principal: Principal: $5 million
by specifying what is known as a $100 million Return = 30%

"waterfall": losses are applied in
reverse order of seniority of tranches.

Shibo Bian (SUFE) Lecture: Financial Modelling



§7 Pricing Collateralized Debt Obligation (CDO)

The Waterfall in ABS Cash flows

@ Equity tranche is much less likely to realize its
return than the other two tranches.

@ There is a separate cash-flow waterfall for -
interest and principal: S [>
flows
o Interest cash flows from the assets are
allocated to senior tranche until senior
tranche has received its promised return
on its outstanding principal. Senior tranche

o If promised return to the senior tranche can
be made, cash flows are then allocated to

mezzanine tranche. Mezzanine tranche

e Principal cash flows are used first to repay  Equity tranche
the principal of senior tranche, then
mezzanine tranche, and finally equity
tranche.
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§7 Pricing Collateralized Debt Obligation (CDO)

Credit Ratings of ABS Tranches

@ Senior tranche of ABS is designed to be rated AAA.
@ Mezzanine tranche is typically rated BBB.
@ Equity tranche is typically unrated.

@ Unlike the ratings assigned to bonds, the ratings assigned to tranches are
"negotiated ratings".

@ The creator of ABS makes a profit when the total return on underlying assets is
greater than the total return offered to tranches.
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§7 Pricing Collateralized Debt Obligation (CDO)

ABS CDOs (Mezz CDOs)

@ Senior AAA-rated tranches created from subprime mortgages can be easily sold
to investors.

@ Equity tranches are typically retained by the originator of mortgages or sold to a
hedge fund.

@ Mezzanine tranches are usually hard to sell.

@ This led financial engineers to create an ABS from mezzanine tranches of ABSs
that were original created from subprime mortgages.
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§7 Pricing Collateralized Debt Obligation (CDO)

Losses to AAA Tranche of ABS CDO

ABSs

Senior tranches (75%)
AAA

Subprime mortgages

ABS CDO

Mezzanine tranches (20%) tranche (75%)

Equity tranche (5%)

Losses to AAA-Rated Tranches of ABS CDO

Losses to Losses to Losses to Losses to Losses to
Subprime Mezzanine Equity Tranche =~ Mezzanine Tranche  Senior Tranche
Portfolios ~ Tranche of ABS of ABS CDO of ABS CDO of ABS CDO
10% 25% 100% 100% 0%
15% 50% 100% 100% 33%
20% 75% 100% 100% 67%
25% 100% 100% 100% 100%
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§7 Pricing Collateralized Debt Obligation (CDO)

Example of ABS CDOs

@ More realistic example of subprime securitizations with ABS, ABS CDOs, and a

CDO of CDO being created:

ARBS

AA
Subprime T
mortgag

BBB

BB. NR
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§7 Pricing Collateralized Debt Obligation (CDO)

The Risk of BBB Tranches

@ BBB tranches of ABSs are often quite thin (1%-3%).
@ They tend to be either safe or completely wiped out.

@ The rating agency models attempted to assign BBB tranche of ABS with the same
probability of loss, i.e. the same expected loss, as a BBB bond.

@ They have a quite different loss distribution (and correlation) from BBB bonds, and
should not be treated as equivalent to BBB bonds (Coval et al., 2009a,b).
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§7 Pricing Collateralized Debt Obligation (CDO)

Dr. David Li, His Copula Models for Pricing CDOs, and Financial Innovations

@ "Understanding the credit risk profile of CDO tranches poses challenges even to
the most sophisticated participants.”— Dr. Alan Greenspan, former chairman of
US Federal Reserve (Financial Times, 2005)

@ Dr. David Li invented the formula in his paper "On Default Correlation: A Copula
Function Approach" (Li, 2000) for pricing CDOs which later "killed" Wall Street.

@ Financial Times called him "the world’s most influential actuary".
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§7 Pricing Collateralized Debt Obligation (CDO)

Correlation Examples: Independent Defaults v.s. Perfectly-correlated Defaults

Consider a CDO with 100 bonds. Assume default rate on bonds is about 1% per year.

@ Independent defaults:

@ Assume that defaults are independent (no clustering).
e Each year, there will be about 1 default.
@ Over 5 years, there will be about 5 defaults.

@ This will almost certainly wipe out the entire equity tranche.

@ Perfectly-correlated defaults:

@ Assume defaults are perfectly correlated: when one bond defaults, they all default.

@ Now, in about 1 year out of 100, everyone defaults; and in 99 years out of 100, no one
defaults.

@ Over a 5-year period, there is about a 5% chance everyone defaults.

@ 5% of the time the equity tranche is wiped out, 95% of the time they suffer no loss.
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§7 Pricing Collateralized Debt Obligation (CDO)

Standardised Synthetic CDOs: iTraxx EUR

CDSs iTraxx CDO

CDS CDS CDS (CDS 'CDS
CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS
Premiums CDS CDS CDS CDS CDS

CDS CDS CDS CDS CDS
= CDS CDS CDS CDS CDS

CDS CDS CDS CDS CDS

Super Senior

Credit Risk CDS CDS CDS DS/ CDS . 229%~100%
- Tranche
R~ 125 Equally "
Weighted Names

Premiums CDS CDS CDS CDS CDS
Jeeene CDS CDS CDS CDS CDS
druiae CDS| CDS CDS DS/ CDS
Default Payments CDS CDS CDS [CDS CDS

CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS
CDS CDS CDS [CDS CDS
CDS CDS CDS CDS CDS
CDS CDS CDS CDS CDS

Senior Tranche 12%-22%

9%—12%
6%—9%
3%—6%
Equity Tranche | 0%—3%

Figure: CDO mechanism and CDO tranches
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§7 Pricing Collateralized Debt Obligation (CDO)

Market Quotes of Typical Standardised Synthetic CDO
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Figure: Time series of CDX index and tranche spreads (bps), 8/2003-10/2005 (Longstaff and Rajan, 2008)
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§7 Pricing Collateralized Debt Obligation (CDO)

Cash-flow Structure of A Synthetic CDO

@ Consider a synthetic CDO with maturity T and underlying n different CDSs of the
same maturity T, and same coupon-paymentdates0 <ty < b <--- <tp=T.

° Ti* is denoted as default time of i name, i =1,2,...,n

@ The accumulated (aggregated) portfolio loss process up to time t is
LthN1— D{tr <t}, teloT],

where N is notional and R; is constant recovery rate of i! name.

@ The process of accumulated (aggregated) portfolio loss percentage up to time is

L= bt

t " nN’
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§7 Pricing Collateralized Debt Obligation (C

DO)

Cash-flow Structure of A Synthetic CDO

@ The accumulated loss process of a CDO tranche of attachment A and detachment

Buptotime tis

LgA'B] =(L—AT—(L—B)",

Losses
absorbed
by-each
tranche

B

Senior

Mezzanine

A

L = portfolio losses
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0<A<B, telo,T]

(L-B)*

Senior

(L-A)F = (L-B)*

Mezzanine

L— (L—A)"

L
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§7 Pricing Collateralized Debt Obligation (CDO)

Cash-flow Structure of A Synthetic CDO

For A > 0, from protection sellers’ point of view (ignoring counterparty risk):

@ Expected loss of tranche [A, B:

-
LossLegap = E / D(O,z‘)dL%A’B]}
0

O Zm: " b0, naL/A®
- (0, £)dL!
Lk=1 bt

[ m
N f—1 + U [AB] _ [AB]
~ E ZD(O’ T) (Lfk 7Ltk—1 ) !
Lk=1
where
° dL£A'B] is loss increment of tranche [A, B] at time t;

e D(0,t) is the current price of a default-free zero-coupon bond of maturity ¢;

o Itis usually assumed that defaults only occur in the middle of coupon-payment dates
(Andersen et al., 2003).
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§7 Pricing Collateralized Debt Obligation (CDO)

Cash-flow Structure of A Synthetic CDO

@ Expected premium of tranche [A, B]:

Premium Leg|a g) E

I
1
(]
=}
—~
o
=+
~
=
n_
>
2
oR
>
@
o
~
| I —

3

r olABl | O[A B]
~ E Z D(0, tk)S[A'B](Tk — Tk—1 )tkﬂf
L k=1

[m L[AB]+L[AB]
= E|) DO.4)s Tka1)<B A*% '
L k=1

where
@ outstanding notional of tranche [A, B] up to time t is
o8 — (B—a)— LM,

° s([)A'B] is credit spread of tranche [A, B] at today t = 0 when the contract is created.
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§7 Pricing Collateralized Debt Obligation (CDO)

Cash-flow Structure of A Synthetic CDO

@ Today t = 0, set fair spread s([)A’B | such that the tranche’ PV = expected premium —

expected loss =0, then,

B[ 57, 0 (0. byt (L - 1) |

AB] |
SO ~ LEA'BJﬂ*LEA'B] A > 0,
[Zk 1 D0, 8 ) (Tk — Ti—1) (BA w)}
or, simply,
([ABl _  [AB]
E| >, D0, 4) (L —1®)
[AB]
%o A>0.

[Z“ (0, t)( Tk—qu)(B—A—LgkA’B])}

Shibo Bian (SUFE) Lecture: Financial Modelling



§7 Pricing Collateralized Debt Obligation (CDO)

Cash-flow Structure of A Synthetic CDO

For A= 0, i.e. equity tranche [0, B]:

@ Seller of equity tranche pays an up-front fee at the effective date of CDO and pays
coupons at a fixed running spread of 500 bps per year to buyer.

@ Equity tranche spread is defined as the ratio of up-front fee to the notional of
equity tranche, i.e.

os _ 1

m
b1+ U [0,8] [0,8]
Z D (0’ T) (Lfk - Ltk—1 )]
m L[O,B] +L[O,B]
> D0, t) (T — Th1) <B— tk2tk1>l }
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§7 Pricing Collateralized Debt Obligation (CDO)

Typical Standardised Synthetic CDO Quotes

@ Markets quote CDO tranches only for standardized pools of CDS.

@ The most liquid indices:

@ iTraxx EUR on 125 European names;
© CDXIGon 125 US names.

Table: Typical CDO Quotes for 5-year Tranches, Aug. 4, 2004 (Hull and White, 2004)

Tranche 0-3% 3-6% 6-9% 9-12% 12-22%  0-100% (Index)
CDX IG 41.38% +500 349 1355 46 14 63.25
iTraxx EUR ~ 27.6% +500 168 70 43 20 42

Table: Implied Correlations from Gaussian-copula Model, Aug. 4, 2004

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% Intensity A
CDXIG 21.7% 4.1% 17.8% 18.5% 29.8% 1.066%
iTraxx EUR 20.5% 5.2% 16.1% 23.3% 31.2% 0.701%
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Recommended Books

@ Credit Risk: Pricing, Measurement, and Management (Duffie and Singleton, 2003)

© Credit Risk Modeling: Theory and Applications (Lando, 2004)

© Credit Derivatives Pricing Models: Models, Pricing and Implementation
(Schénbucher, 2003)

© Introduction to Credit Risk Modeling (Bluhm et al., 2010)
@ Credit Risk: Modeling, Valuation and Hedging (Bielecki and Rutkowski, 2004)
Q@ Credit Risk Modeling Using Excel and VBA (Loeffler and Posch, 2010)

@ Modelling Single-name and Multi-name Credit Derivatives (O’Kane, 2011)

Shibo Bian (SUFE) Lecture: Financial Modelling 100/ 104



References |

Acharya, V. V., Schnabl, P, and Suarez, G. (2013). Securitization without risk transfer. Journal of Financial
Economics, 107(3):515-536.

Altman, E. |. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The
Journal of Finance, 23(4):589-609.

Altman, E. |., Brady, B., Resti, A., and Sironi, A. (2005). The link between default and recovery rates: Theory,
empirical evidence, and implications. The Journal of Business, 78(6):2203—2228.

Andersen, L., Sidenius, J., and Basu, S. (2003). All your hedges in one basket. Risk, 16(November):67-72.

Bharath, S. T. and Shumway, T. (2008). Forecasting default with the Merton distance to default model. Review
of Financial Studies, 21(3):1339-1369.

Bielecki, T. R. and Rutkowski, M. (2004). Credit Risk: Modeling, Valuation and Hedging. Springer.

Black, F. and Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. The
Journal of Finance, 31(2):351-367.

Bluhm, C., Overbeck, L., and Wagner, C. (2010). Introduction to Credit Risk Modeling, Second Edition. CRC
Press.

Chava, S., Stefanescu, C., and Turnbull, S. (2011). Modeling the loss distribution. Management Science,
57(7):1267-1287.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. John Wiley & Sons.

Coval, J., Jurek, J., and Stafford, E. (2009a). The economics of structured finance. The Journal of Economic
Perspectives, 23(1):3-25.

Shibo Bian (SUFE) Lecture: Financial Modelling



References Il

Coval, J. D., Jurek, J. W., and Stafford, E. (2009b). Economic catastrophe bonds. The American Economic
Review, 99(3):628—666.

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B
(Methodological), 34(2):187—-220.

Cox, D. R. (1955). Some statistical methods connected with series of events. Journal of the Royal Statistical
Society. Series B (Methodological), 17(2):129-164.

Das, S. R., Duffie, D., Kapadia, N., and Saita, L. (2007). Common failings: How corporate defaults are
correlated. The Journal of Finance, 62(1):93-117.

De Servigny, A. and Renault, O. (2002). Default correlation: empirical evidence. Standard & Poor’s.
Duffie, D. (2011). Measuring Corporate Default Risk. Oxford University Press.

Duffie, D., Saita, L., and Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates.
Journal of Financial Economics, 83(3):635-665.

Duffie, D. and Singleton, K. J. (2003). Credit Risk: Pricing, Measurement, and Management. Princeton
University Press.

Finkelstein, V., Pan, G., Lardy, J.-P,, and Ta, T. (2002). CreditGrades—Technical Document. RiskMetrics Group.

Fischer, E. O., Heinkel, R., and Zechner, J. (1989). Dynamic capital structure choice: Theory and tests. The
Journal of Finance, 44(1):19—40.

Gupton, G. M., C. Finger, C., and Bhatia, M. (1997). CreditMetrics—Technical Document. JP Morgan, New York.

Shibo Bian (SUFE) Lecture: Financial Modelling



References lli

Hull, J. C., Predescu, M., and White, A. (2005). Bond prices, default probabilities and risk premiums. Journal of
Credit Risk, 1(2):53-60.

Hull, J. C. and White, A. D. (2000). Valuing credit default swaps |: No counterparty default risk. The Journal of
Derivatives, 8(1):29—-40.

Hull, J. C. and White, A. D. (2004). Valuation of a CDO and an n-th to default CDS without Monte Carlo
simulation. The Journal of Derivatives, 12(2):8-23.

Jarrow, R. A., Lando, D., and Turnbull, S. M. (1997). A Markov model for the term structure of credit risk
spreads. Review of Financial Studies, 10(2):481-523.

Jarrow, R. A. and Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The
Journal of Finance, 50(1):53-85.

Jones, E. P., Mason, S. P, and Rosenfeld, E. (1984). Contingent claims analysis of corporate capital structures:
An empirical investigation. The Journal of Finance, 39(3):611-625.

Kim, 1. J., Ramaswamy, K., and Sundaresan, S. (1993). Does default risk in coupons affect the valuation of
corporate bonds?: A contingent claims model. Financial Management, 22(3):117-131.

Lando, D. (2004). Credit Risk Modeling: Theory and Applications. Princeton University Press.

Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal capital structure. The Journal of
Finance, 49(4):1213-1252.

Li, D. X. (2000). On default correlation: a copula function approach. The Journal of Fixed Income, 9(4):43-54.

Shibo Bian (SUFE) Lecture: Financial Modelling



References IV

Loeffler, G. and Posch, P. N. (2010). Credit Risk Modeling Using Excel and VBA, Second Edition. John Wiley &
Sons.

Longstaff, F. A. and Rajan, A. (2008). An empirical analysis of the pricing of collateralized debt obligations. The
Journal of Finance, 63(2):529-563.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of
Finance, 29(2):449—470.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer, 2nd edition.
O’Kane, D. (2011). Modelling Single-name and Multi-name Credit Derivatives. John Wiley & Sons.

Schénbucher, P. J. (2003). Credit Derivatives Pricing Models: Models, Pricing and Implementation. John Wiley
& Sons.

Sklar, M. (1959). Fonctions de répartition a n dimensions et leurs marges. Université Paris 8.

Shibo Bian (SUFE) Lecture: Financial Modelling 104 /104



	Default Risk
	Accounting-Based Credit Risk Modelling
	Intensity-Based Credit Risk Modelling
	Rating-Based Credit Risk Modelling
	Equity-Based Credit Risk Modelling
	Modelling Dependent Defaults
	Pricing Collateralized Debt Obligation (CDO)

