Abstract algebras

Yanhua Wang Shanghai University of Finance and Economics

2022.9

• Chapter I. Preliminaries

1.1 Sets

• A set is a well-defined collection of objects. The objects that belong to a set are called *elements* or *members*.

- A set is a well-defined collection of objects. The objects that belong to a set are called *elements* or *members*.
- Write a set as A, B, C, \cdots .

- A set is a well-defined collection of objects. The objects that belong to a set are called *elements* or *members*.
- Write a set as A, B, C, \cdots .
- \bullet $a \in A$

- A set is a well-defined collection of objects. The objects that belong to a set are called *elements* or *members*.
- Write a set as A, B, C, \cdots .
- \bullet $a \in A$
- \bullet $a \notin A$

- A set is a well-defined collection of objects. The objects that belong to a set are called *elements* or *members*.
- Write a set as A, B, C, \cdots .
- $a \in A$
- \bullet $a \notin A$
- Statement, list all elements

• N is the set of all natural numbers $\{0, 1, 2, 3, \cdots\}$. \mathbb{Z} is the set of all integers $\{\cdots, -2, -1, 0, 1, 2, \cdots\}$. \mathbb{Z}^+ is the set of all integers $\{1, 2, 3, \cdots\}$. \mathbb{Q} is the set of all rational numbers: fraction of the form $\frac{a}{b}$, for $a, b \in \mathbb{Z}$ and $b \neq 0$.

- N is the set of all natural numbers $\{0,1,2,3,\cdots\}$. \mathbb{Z} is the set of all integers $\{\cdots,-2,-1,0,1,2,\cdots\}$. \mathbb{Z}^+ is the set of all integers $\{1,2,3,\cdots\}$. \mathbb{Q} is the set of all rational numbers: fraction of the form $\frac{a}{b}$, for $a,b\in\mathbb{Z}$ and $b\neq 0$.
- \mathbb{R} is the set of all real numbers. \mathbb{C} is the set of all complex numbers. \emptyset is an empty set.

• Let A and B be two sets, we say A is equal to B if A and B have the same elements, denoted by A = B.

- Let A and B be two sets, we say A is equal to B if A and B have the same elements, denoted by A = B.
- A is different from B if A is not equal to B, i.e. $A \neq B$.

- Let A and B be two sets, we say A is equal to B if A and B have the same elements, denoted by A = B.
- A is different from B if A is not equal to B, i.e. $A \neq B$.
- A is contained in B or that B contains A if every element of A is also an element of B, write $A \subseteq B$ or $B \supseteq A$. If $A \subseteq B$, we say that A is a subset of A.

- Let A and B be two sets, we say A is equal to B if A and B have the same elements, denoted by A = B.
- A is different from B if A is not equal to B, i.e. $A \neq B$.
- A is contained in B or that B contains A if every element of A is also an element of B, write $A \subseteq B$ or $B \supseteq A$. If $A \subseteq B$, we say that A is a subset of A.
- We have A = B if and only if $A \subseteq B$ and $B \subseteq A$.

- Let A and B be two sets, we say A is equal to B if A and B have the same elements, denoted by A = B.
- A is different from B if A is not equal to B, i.e. $A \neq B$.
- A is contained in B or that B contains A if every element of A is also an element of B, write $A \subseteq B$ or $B \supseteq A$. If $A \subseteq B$, we say that A is a subset of A.
- We have A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- If B is a subset of A and B is different from A, we write $B \subset A$. We say B is a proper subset of A. The inclusion of B in A is *strict*.

• The union $A \cup B$ of two sets A and B is the set whose elements are all elements of A and of B:

$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$

• The union $A \cup B$ of two sets A and B is the set whose elements are all elements of A and of B:

$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$

• The intersection of A and B is the set whose elements are elements of A and of B:

$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

• If $A \cap B = \emptyset$ and $X = A \cup B$, we say X is the disjoint union of A and B.

- If $A \cap B = \emptyset$ and $X = A \cup B$, we say X is the disjoint union of A and B.
- The difference of A and B is $A \setminus B = \{x | x \in A \text{ and } x \notin B\}$. Let A be a subset of a given set X.

- If $A \cap B = \emptyset$ and $X = A \cup B$, we say X is the disjoint union of A and B.
- The difference of A and B is $A \setminus B = \{x | x \in A \text{ and } x \notin B\}$. Let A be a subset of a given set X.
- The difference $X \setminus A$ is called the *complement* set of A in X. We write C(A) or A'.

Proposition

Let A and B be sets. Then

- (1) $A \cup B = A$ if and only if $B \subseteq A$.
- (2) $A \cup B = \emptyset$ if and only if $A = \emptyset$ and $B = \emptyset$.
- (3) $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
- (4) $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Proposition

Let A and B be sets. Then

(1) Commutative law of union:

$$A \cup B = B \cup A$$
.

(2) Commutative law of intersection:

$$A \cap B = B \cap A$$
.

(3) Associative law of union:

$$(A \cup B) \cup C = A \cup (B \cup C).$$

Proposition

(4) Associative law of intersection:

$$(A\cap B)\cap C=A\cap (B\cap C).$$

(5) Distributive law of intersection with respect to union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

(6) Distributive law of union with respect to intersection:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Proposition

Let A be a subset of set X. Then

- (1) (A')' = A.
- $(2) A' \cup A = X.$
- (3) $A' \cap A = \emptyset$.

Proposition

Let A, B and C be sets. Then

(1)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
.

(2)
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
.

(3)
$$(B \cup C) \setminus A = (B \setminus A) \cup (C \setminus A)$$
.

$$(4)\ (B\cap C)\backslash A=(B\backslash A)\cap (C\backslash A).$$

Proposition

Let A and B be subsets of a set X. Then

- (1) $A \subseteq B$ if and only if $B' \subseteq A'$.
- (2) $(A \cup B)' = A' \cap B'$.
- $(3) (A \cap B)' = A' \cup B'.$

Definition

Let X be a set. The power set of X is the set whose elements are the subsets of X. We denote it by $P(X) = \{A | A \subseteq X\}$.

0

Definition

Let X be a set. The power set of X is the set whose elements are the subsets of X. We denote it by $P(X) = \{A | A \subseteq X\}$.

Example

Let $X = \{1, 2\}$, then $P(X) = \{\emptyset, X, \{1\}, \{2\}\}$. If there are n elements in X, then $|P(X)| = 2^n$, where |P(X)| denote the order of P(X).

◆ロト ◆御 ト ◆注 ト ◆注 ト 注 の へ ○

• Exercise: What is P(X)?

- Exercise: What is P(X)?
- (1)If $X = \{1, 2, 3\}$.

- Exercise: What is P(X)?
- (1)If $X = \{1, 2, 3\}$.
- (2)If $X = \emptyset$.

- Exercise: What is P(X)?
- (1)If $X = \{1, 2, 3\}$.
- (2)If $X = \emptyset$.
- (3)If $X = {\emptyset}$.

1.2 Maps

Maps

Definition

A map(or function) f consists of a nonempty set X, of a nonempty set Y and of a law that assigns to each $x \in X$, exactly one element, denoted by f(x) of Y. Denote

$$f: X \to Y: x \mapsto y.$$

• X is called the domain of map f, Y is called the codomain of map f, f(x) is called the image (value) of x, x is called the preimage of f(x);

Maps

Examples

• (1) $f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$ is a map.

Maps

Examples

- (1) $f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$ is a map.
- (2) $f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$ is a map.

Examples

- (1) $f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$ is a map.
- (2) $f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$ is a map.
- (3) $f: \mathbb{Q} \to \mathbb{Z}$, where

$$\mathbb{Q} = \{x | x = \frac{p}{q} | p, q \in \mathbb{Z}\},\$$

define
$$f(\frac{p}{q}) = p$$
.

Examples

- (1) $f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$ is a map.
- (2) $f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$ is a map.
- (3) $f: \mathbb{Q} \to \mathbb{Z}$, where

$$\mathbb{Q} = \{x | x = \frac{p}{q} | p, q \in \mathbb{Z}\},\$$

define $f(\frac{p}{q}) = p$.

• f is not a mapping since $f(\frac{1}{2}) = 1$, but $f(\frac{2}{4}) = 2$.

Examples

- (1) $f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$ is a map.
- (2) $f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$ is a map.
- (3) $f: \mathbb{Q} \to \mathbb{Z}$, where

$$\mathbb{Q}=\{x|x=\frac{p}{q}|p,q\in\mathbb{Z}\},$$

define $f(\frac{p}{q}) = p$.

- f is not a mapping since $f(\frac{1}{2}) = 1$, but $f(\frac{2}{4}) = 2$.
- Two maps f and g are equal if and only if they have the same domain, codomain and the same law, that is, for every $x \in X$, we have f(x) = g(x).

Some particular maps:

• (1) Identity map or Identity: Let X be a nonempty set. $1_x: X \to X: x \mapsto x$.

Some particular maps:

- (1) Identity map or Identity: Let X be a nonempty set. $1_x: X \to X: x \mapsto x$.
- (2) Inclusion map: If A is a nonempty subset of X, the conclusion map of A in X is the function denoted by i_A with A as a domain, X as a codomain, $i_A : A \to X : a \mapsto a$, given by $i_A(\mathbf{a}) = \mathbf{a}$.

Some particular maps:

- (1) Identity map or Identity: Let X be a nonempty set. $1_x: X \to X: x \mapsto x$.
- (2) Inclusion map: If A is a nonempty subset of X, the conclusion map of A in X is the function denoted by i_A with A as a domain, X as a codomain, $i_A : A \to X : a \mapsto a$, given by $i_A(\mathbf{a}) = \mathbf{a}$.
- Note that if A is a nonempty proper subset of X. 1_a and i_a have different domain, thus $1_A \neq i_A$. $1_A = i_A$ if and only if A = X.

• (3) Restriction: Let $f: X \to Y$ be a map and A be a nonempty subset of X. The map $f|_A: A \to Y: a \mapsto f(a)$ is called the restriction of f to A. In particular $i_A = 1_X|_A$.

• (3) Restriction: Let $f: X \to Y$ be a map and A be a nonempty subset of X. The map $f|_A: A \to Y: a \mapsto f(a)$ is called the restriction of f to A. In particular $i_A = 1_X|_A$.

• (4) Constant map: Let X be a nonempty set and let y be a fixed element of Y. The map $f_y: X \to Y: x \mapsto y$ is called the constant map. Note that $f_y(X) = \{y\}$ and $\text{Im}(f) = \{f(x) | x \in X\} \subseteq Y$.

Examples:

• (1) $f_1: \mathbb{N} \to \mathbb{N}: x \mapsto 2x$.

$$\operatorname{Im}(f_1) = \{y | \exists x \in \mathbb{N}, \text{ such that } y = 2x\}$$

is the set of even natural numbers.

Examples:

• (1) $f_1: \mathbb{N} \to \mathbb{N}: x \mapsto 2x$.

$$\operatorname{Im}(f_1) = \{y | \exists x \in \mathbb{N}, \text{ such that } y = 2x\}$$

is the set of even natural numbers.

• (2) $f_2: \mathbb{N} \to \mathbb{N}: x \mapsto 2x + 1$.

$$\operatorname{Im}(f_2) = \{y | \exists x \in \mathbb{N}, \text{ such that } y = 2x + 1\}$$

is the set of odd natural numbers.

Examples:

• (1) $f_1: \mathbb{N} \to \mathbb{N}: x \mapsto 2x$.

$$\operatorname{Im}(f_1) = \{y | \exists x \in \mathbb{N}, \text{ such that } y = 2x\}$$

is the set of even natural numbers.

• (2) $f_2: \mathbb{N} \to \mathbb{N}: x \mapsto 2x + 1$.

$$\operatorname{Im}(f_2) = \{y | \exists x \in \mathbb{N}, \text{ such that } y = 2x + 1\}$$

is the set of odd natural numbers.

• (3) $f_3: \mathbb{Z} \to \mathbb{Z}: x \mapsto 3x$. Im (f_3) is the set of integers of multiple of 3.

Examples:

• (1) $f_1: \mathbb{N} \to \mathbb{N}: x \mapsto 2x$.

$$\operatorname{Im}(f_1) = \{ y | \exists x \in \mathbb{N}, \text{ such that } y = 2x \}$$

is the set of even natural numbers.

• (2) $f_2: \mathbb{N} \to \mathbb{N}: x \mapsto 2x + 1$.

$$\operatorname{Im}(f_2) = \{ y | \exists x \in \mathbb{N} , \text{ such that } y = 2x + 1 \}$$

is the set of odd natural numbers.

- (3) $f_3: \mathbb{Z} \to \mathbb{Z}: x \mapsto 3x$. Im (f_3) is the set of integers of multiple of 3.
- (4) $f_4: \mathbb{Z} \to \mathbb{Z}: x \mapsto -3x$. Im (f_4) is the set of integers of multiple of -3. We have Im $(f_4) = \text{Im}(f_3)$, but $f_4 \neq f_3$.

• (5) $f_y: X \to Y: x \to y$. $Im(f_y) = \{y\}$.

- (5) $f_y: X \to Y: x \to y$. $Im(f_y) = \{y\}$.
- (6) $i_A: A \to X: a \mapsto a. \ i_A(A) = A.$

- (5) $f_y: X \to Y: x \to y$. $Im(f_y) = \{y\}$.
- (6) $i_A: A \to X: a \mapsto a. \ i_A(A) = A.$
- (7) $f_5: \mathbb{Q} \to \mathbb{Q}: x \mapsto 3x$. $\operatorname{Im}(f_5) = \mathbb{Q}$.

Definition

Let $f: X \to Y$ be a map, f is said to be a surjective map(or onto) if Im(f) = Y.

0

Definition

Let $f: X \to Y$ be a map, f is said to be a surjective map(or onto) if Im(f) = Y.

•

• f is surjective $\iff \forall y \in Y, \exists x \in X, \text{ such that } f(x) = y.$

Definition

Let $f: X \to Y$ be a map, f is said to be injective(or one-to-one) if given any $x, x' \in X$, $x \neq x'$ implies that $f(x) \neq f(x')$.

•

Definition

Let $f: X \to Y$ be a map, f is said to be injective(or one-to-one) if given any $x, x' \in X$, $x \neq x'$ implies that $f(x) \neq f(x')$.

0

Definition

Let $f: X \to Y$ is called bijective if f is surjective and injective.

•

Definition

Let $f: X \to Y$ be a map, f is said to be injective(or one-to-one) if given any $x, x' \in X$, $x \neq x'$ implies that $f(x) \neq f(x')$.

0

Definition

Let $f: X \to Y$ is called bijective if f is surjective and injective.

0

• f is bijective $\iff \forall y \in Y$, there exists an unique $x \in X$, such that f(x) = y.

• Let $f: X \to Y$ and $g: Y \to Z$ be maps, such that the codomain of f coincides with the domain of g. Then the composition of f and g is given by $g \circ f: X \to Z: x \to g(f(x))$.

- Let $f: X \to Y$ and $g: Y \to Z$ be maps, such that the codomain of f coincides with the domain of g. Then the composition of f and g is given by $g \circ f: X \to Z: x \to g(f(x))$.
- Let $f: Z \to Z: x \to x+1, g: Z \to Z: x \to x^2$, then $g \circ f: Z \to Z: x \to (x+1)^2$.

- Let $f: X \to Y$ and $g: Y \to Z$ be maps, such that the codomain of f coincides with the domain of g. Then the composition of f and g is given by $g \circ f: X \to Z: x \to g(f(x))$.
- Let $f: Z \to Z: x \to x+1, g: Z \to Z: x \to x^2$, then $g \circ f: Z \to Z: x \to (x+1)^2$.
- Let $f: X \to Y$ and A be a nonempty subset of X, then $f|_A = f \circ i_A : a \to f(a)$.

- Let $f: X \to Y$ and $g: Y \to Z$ be maps, such that the codomain of f coincides with the domain of g. Then the composition of f and g is given by $g \circ f: X \to Z: x \to g(f(x))$.
- Let $f: Z \to Z: x \to x+1, g: Z \to Z: x \to x^2$, then $g \circ f: Z \to Z: x \to (x+1)^2$.
- Let $f: X \to Y$ and A be a nonempty subset of X, then $f|_A = f \circ i_A : a \to f(a)$.
- $f: Z \to Z, g: Z \to Z$, then $g \circ f \neq f \circ g$.

Proposition

Let $f: X \to Y, g: Y \to Z, h: Z \to T$ be maps. Then

- (1) $f \circ 1x = f = 1y \circ f$.
- (2) $h \circ (g \circ f) = (h \circ g) \circ f$.

Proposition

Let $f: X \mapsto Y$ and $g: Y \mapsto Z$ be maps

- (1) If f and g are both injective, then $g \circ f$ is injective.
- (2) If f and g are both surjective, then $g \circ f$ is surjective.
- (3) If $g \circ f$ is injective, then f is injective.
- (4) If $g \circ f$ is surjective, then g is surjective.

• Consider the following maps

$$f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$$

and

$$g: \mathbb{Z} \to \mathbb{N}: x \mapsto x^2$$

Then $g \circ f$ is injective, but g is neither injective nor not surjective.

• Consider the following maps

$$f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$$

and

$$g: \mathbb{Z} \to \mathbb{N}: x \mapsto x^2$$

Then $g \circ f$ is injective, but g is neither injective nor not surjective.

• Consider the following maps:

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$$

and

$$g: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}: x \mapsto x^2.$$

We have $g \circ f$ is surjective. So g is surjective, but f is neither surjective nor injective.

Corollary

Let $f: X \to Y$ and $g: Y \to Z$ be maps,

- (1) If f and g are both bijective, then also $g \circ f$ is bijective.
- (2) If $g \circ f$ is bijective, then f is injective and g is surjective.
 - Let $f: \mathbb{N} \to \mathbb{Z}: x \mapsto -x$, and $g: \mathbb{Z} \to \mathbb{N}: x \mapsto |x|$. Then $g \circ f = 1_N$. We have f is injective and g is surjective.

Definition

Let $f: X \to Y$ be a map. A map $g: Y \to X$ is called a *left inverse* of f if $g \circ f = 1_X$. A map $h: Y \to X$ is called a *right inverse* of f if $f \circ h = 1_Y$. A map $g: Y \to X$ is called a *two-sided inverse*, if g is a left inverse and a right inverse, i.e. $g \circ f = 1_X$, $f \circ g = 1_Y$.

Theorem

Let $f: X \to Y$ be a map, then

- (1) f is injective if and only if f has (at least) a left inverse.
- (2) f is surjective if and only if f has (at least) a right inverse.

Examples:

• (1) Let $f: \mathbb{N} \to \mathbb{N}$ be the map defined by f(x) = x + 2. Then f is injective and $Im(f) = \{x \in \mathbb{N} | x \geq 2\}$. The map $g_0: \mathbb{N} \to \mathbb{N}$ defined by $g_0(x) = x - 2$ if $x \geq 2$ and $g_0(x) = 0$ if x < 2, is a left inverse of f.

Examples:

- (1) Let $f : \mathbb{N} \to \mathbb{N}$ be the map defined by f(x) = x + 2. Then f is injective and $Im(f) = \{x \in \mathbb{N} | x \geq 2\}$. The map $g_0 : \mathbb{N} \to \mathbb{N}$ defined by $g_0(x) = x - 2$ if $x \geq 2$ and $g_0(x) = 0$ if x < 2, is a left inverse of f.
- (2) Let $f: \mathbb{Z} \to \mathbb{N}$ be the map defined by f(x) = |x|. The map $h = i_{\mathbb{N}} : \mathbb{N} \to \mathbb{Z}$ is a right inverse of f. Also $g: \mathbb{N} \to \mathbb{Z}$ defined by g(x) = -x is a right inverse of f.

Corollary: Let $f:X\to Y$ be a map. The following are equivalent

- \bullet (1) f is bijective.
 - (2) f has a left inverse and a right inverse.
 - (3) f has a two-sided inverse.

Corollary: Let $f: X \to Y$ be a map. The following are equivalent

- \bullet (1) f is bijective.
 - (2) f has a left inverse and a right inverse.
 - (3) f has a two-sided inverse.
- Moreover, if f satisfies one of the above conditions, then
 - (i) every left inverse of f is a two-sided inverse of f.
 - (ii) every right inverse of f is a two-sided inverse of f.
 - (iii) f has a unique two-sided inverse.

Corollary: Let $f: X \to Y$ be a map. The following are equivalent

- \bullet (1) f is bijective.
 - (2) f has a left inverse and a right inverse.
 - (3) f has a two-sided inverse.
- Moreover, if f satisfies one of the above conditions, then
 - (i) every left inverse of f is a two-sided inverse of f.
 - (ii) every right inverse of f is a two-sided inverse of f.
 - (iii) f has a unique two-sided inverse.
- Such an inverse of f is called the *inverse* of f and it is denoted by f^{-1} . Also f^{-1} is bijective and $((f^{-1})^{-1}) = f$.

Corollary

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then $g \circ f: X \to Z$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Theorem

A map is invertible if and only if it is both injective (one-to-one) and surjective (onto).

Proposition

Let $f: X \longrightarrow Y$ be a map and left $(A_i)_{i \in I}$ be a family of subsets of X. Then

$$(1)f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f(A_i)$$
$$(2)f(\bigcap_{i\in I} A_i) \subseteq \bigcap_{i\in I} f(A_i)$$

Proposition

Let $f: X \longrightarrow Y$ be an injective map and left $(A_i)_{i \in I}$ be a family of subsets of X. Then

$$f(\bigcap_{i\in I} A_i) = \bigcap_{i\in I} f(A_i)$$

Example

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be the constant map equal to 0 Let $A_1 = \{x \in \mathbb{Z} | x \leq 0\}$, $A_2 = \{x \in \mathbb{Z} | x < 0\}$. Then $A_1 \cap A_2 = \emptyset$, while $f(A_1) = \{0\} = f(A_2)$, so that $f(A_1) \cap f(A_2) = \{0\}$.

Definition

Given sets X and Y, we can define a new set

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$

 $X \times Y$ is called the Cartesian product of X and Y.

• Examples: Let $X = \{x, y\}, Y = \{1, 2, 3\}$, and $Z = \emptyset$.

Definition

Given sets X and Y, we can define a new set

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$

 $X \times Y$ is called the Cartesian product of X and Y.

- Examples: Let $X = \{x, y\}, Y = \{1, 2, 3\}, \text{ and } Z = \emptyset.$
- $X \times Y = \{(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)\}$
- $X \times Z = \emptyset$.

Definition

Given sets X and Y, we can define a new set

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$

 $X \times Y$ is called the Cartesian product of X and Y.

- Examples: Let $X = \{x, y\}, Y = \{1, 2, 3\}, \text{ and } Z = \emptyset.$
- $X \times Y = \{(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)\}$
- $\bullet \ X \times Z = \emptyset.$
- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

Definition

Given sets X and Y, we can define a new set

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$

 $X \times Y$ is called the Cartesian product of X and Y.

- Examples: Let $X = \{x, y\}, Y = \{1, 2, 3\}, \text{ and } Z = \emptyset.$
- $X \times Y = \{(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)\}$
- $X \times Z = \emptyset$.
- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.
- \bullet Cartesian product of n sets to be

$$X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \cdots, x_n) | x_i \in X_i, i = 1, \cdots n\}.$$

and
$$X^n = X \times X \times \cdots \times X$$
.

Definition

Let X be a set. We say X admits a binary operation if there exists a map $f: X \times X \to X$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ め�@

Definition

Let X be a set. We say X admits a binary operation if there exists a map $f: X \times X \to X$.

•

• Let X and Y be sets. A relation R between X and Y is a subset of the set product $X \times Y$. If $(x, y) \in R$, then x is said to be related to y by R and we write xRy.

ullet Examples

- Examples
- (1) let X be a set, define $\triangle(x) = \{(x,y)|x,y \in X, x=y\} \subseteq X \times X$. $\triangle(x)$ is a binary relation of $X \times X$. We call $\triangle(x)$ as diagonal relation of X.

- Examples
- (1) let X be a set, define $\triangle(x) = \{(x,y)|x,y \in X, x=y\} \subseteq X \times X$. $\triangle(x)$ is a binary relation of $X \times X$. We call $\triangle(x)$ as diagonal relation of X.
- (2) Let P be the set of prime numbers. Define $R = \{(x, y) \in P \times \mathbb{N} | x \text{ divides } y\}$, R is a binary relation of $P \times \mathbb{N}$. R is called divisibility relation.

1.4 Equivalence relations and equivalence classes

Definition

An equivalence relation on a set X is a relation $R \subseteq X \times X$ satisfy

• (1) reflexive property: $(x, x) \in R$ for all $x \in X$;

Definition

An equivalence relation on a set X is a relation $R \subseteq X \times X$ satisfy

- (1) reflexive property: $(x, x) \in R$ for all $x \in X$;
- (2) symmetric property: $(x, y) \in R$ implies $(y, x) \in R$;

Definition

An equivalence relation on a set X is a relation $R \subseteq X \times X$ satisfy

- (1) reflexive property: $(x, x) \in R$ for all $x \in X$;
- (2) symmetric property: $(x, y) \in R$ implies $(y, x) \in R$;
- (3) transitive property: $(x, y), (y, z) \in R$ imply $(x, z) \in R$.

Definition

An equivalence relation on a set X is a relation $R \subseteq X \times X$ satisfy

- (1) reflexive property: $(x, x) \in R$ for all $x \in X$;
- (2) symmetric property: $(x, y) \in R$ implies $(y, x) \in R$;
- (3) transitive property: $(x, y), (y, z) \in R$ imply $(x, z) \in R$.
- Write $x \sim y$ instead of $(x, y) \in R \subset X \times X$.

Examples:

• Let A and B be $n \times n$ matrix. We define $A \sim B$ if there exist an invertible matrix P, such that $PAP^{-1} = B$.

Examples:

- Let A and B be $n \times n$ matrix. We define $A \sim B$ if there exist an invertible matrix P, such that $PAP^{-1} = B$.
- Suppose that f(x) and g(x) are differentiable functions on \mathbb{R} . We can define $f(x) \sim g(x)$ if f'(x) = g'(x).

Examples:

- Let A and B be $n \times n$ matrix. We define $A \sim B$ if there exist an invertible matrix P, such that $PAP^{-1} = B$.
- Suppose that f(x) and g(x) are differentiable functions on \mathbb{R} . We can define $f(x) \sim g(x)$ if f'(x) = g'(x).
- For (x_1, y_1) and $(x_2, y_2) \in \mathbb{R}^2$, define $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

Exercise:

Let p,q,r and s be integers, where q and s are nonzero. Define $p/q \sim r/s$ if ps = qr. Then \sim is an equivalence relation.

Example

The binary relation R on $\mathbb Q$ given by $xRy \Longleftrightarrow x-y \in \mathbb Q$ is an equivalence relation.

Definition

A partition \mathfrak{P} of a set X is a collection of sets X_1, X_2, \dots, X_n , such that $X_i \cap X_j = \emptyset, i \neq j$ and $\bigcup_i X_i = X$.

Let \sim be an equivalence relation on a set X, and $x \in X$, $[x] = \{y \in X | y \sim x\}$ is called the *equivalence class* of x.

Theorem

Let \sim be an equivalence relation on a set X. Then the equivalence classes of X from a partition of a set X. Conversely, if $\mathfrak{P} = \{X_i\}$ is a partition of a set X. Then there is a equivalence relation on X with equivalence classes X_i .

• Proof: Suppose that there exists an equivalence relation \sim on a set X. For $x \in X$, we have $x \sim x$, i.e. $x \in [x]$, so [x] is nonempty. It is clear that $\bigcup_{x \in X} [x] = X$.

- Proof: Suppose that there exists an equivalence relation \sim on a set X. For $x \in X$, we have $x \sim x$, i.e. $x \in [x]$, so [x] is nonempty. It is clear that $\bigcup_{x \in X} [x] = X$.
- Next, we will show that $X_i \cap X_j = \emptyset$ or $X_i = X_j$.

- Proof: Suppose that there exists an equivalence relation \sim on a set X. For $x \in X$, we have $x \sim x$, i.e. $x \in [x]$, so [x] is nonempty. It is clear that $\bigcup_{x \in X} [x] = X$.
- Next, we will show that $X_i \cap X_j = \emptyset$ or $X_i = X_j$.
- Assume that $z \in X_i \cap X_j$, write $X_i = [x], X_j = [y]$, let $z \in [x] \cap [y]$ i.e $z \sim x$ and $z \sim y$. So $x \sim y$, $[x] \subseteq [y], [y] \subseteq [x]$. Hence [y] = [x],

- Proof: Suppose that there exists an equivalence relation \sim on a set X. For $x \in X$, we have $x \sim x$, i.e. $x \in [x]$, so [x] is nonempty. It is clear that $\bigcup_{x \in X} [x] = X$.
- Next, we will show that $X_i \cap X_j = \emptyset$ or $X_i = X_j$.
- Assume that $z \in X_i \cap X_j$, write $X_i = [x], X_j = [y]$, let $z \in [x] \cap [y]$ i.e $z \sim x$ and $z \sim y$. So $x \sim y$, $[x] \subseteq [y]$, $[y] \subseteq [x]$. Hence [y] = [x],
- Conversely, if \mathfrak{P} is a partition of X, $X = \bigcup_i X_i$, define $x \sim y$ if $x \in X_i, y \in X_i$. We have $x \sim x$, then \sim is reflexive. If $x \sim y$, that means $x \in X_i$ and $y \in X_i$, then $y \sim x$, \sim is symmetric. If $x \sim y, y \sim z$, then $x \sim z$. In a word, \sim is a equivalence relation.

• Let r and s be two integers and suppose that $n \in \mathbb{N}$. We say that r is *congruent* to s module n if r - s is divisible by n, i.e. r - s = nk for some $k \in \mathbb{Z}$. We write $r \equiv s \pmod{n}$.

- Let r and s be two integers and suppose that $n \in \mathbb{N}$. We say that r is *congruent* to s module n if r s is divisible by n, i.e. r s = nk for some $k \in \mathbb{Z}$. We write $r \equiv s \pmod{n}$.
- Let n = 3, $11 5 = 3 \cdot 2$. Let n = 5. $7 17 = 5 \cdot 2$.

- Let r and s be two integers and suppose that $n \in \mathbb{N}$. We say that r is *congruent* to s module n if r s is divisible by n, i.e. r s = nk for some $k \in \mathbb{Z}$. We write $r \equiv s \pmod{n}$.
- Let n = 3, $11 5 = 3 \cdot 2$. Let n = 5. $7 17 = 5 \cdot 2$.

Proposition

Congruence modulo n forms an equivalence relation of \mathbb{Z} .

0

- Let r and s be two integers and suppose that $n \in \mathbb{N}$. We say that r is *congruent* to s module n if r s is divisible by n, i.e. r s = nk for some $k \in \mathbb{Z}$. We write $r \equiv s \pmod{n}$.
- Let n = 3, $11 5 = 3 \cdot 2$. Let n = 5. $7 17 = 5 \cdot 2$.

Proposition

Congruence modulo n forms an equivalence relation of \mathbb{Z} .

- •
- Proof: Define $r \sim s$ is congruent to $s \mod n$. We have $r-r=0 \times n$, \sim is reflexive. If $r \sim s$, i.e. r-s=nk for some $k \in \mathbb{Z}$. Then s-r=n(-k), that means $s \sim r$. If $r \sim s, s \sim t$, then r-s=nk, s-t=nl for some $k, l \in \mathbb{Z}$, then r-t=n(k+l). Transitive property is true.

Definition

A $factor\ set$ of X about an equivalence relation R is a set which elements are equivalence classes.

• Let $X = \{1, 2, 3, 4\}$. Define an equivalence relation R by $(x, y) \sim (u, v)$ if x + y = u + v.

Definition

A $factor\ set$ of X about an equivalence relation R is a set which elements are equivalence classes.

- Let $X = \{1, 2, 3, 4\}$. Define an equivalence relation R by $(x, y) \sim (u, v)$ if x + y = u + v.
- There are seven equivalence class on $X \times X$.

Definition

A $factor\ set$ of X about an equivalence relation R is a set which elements are equivalence classes.

- Let $X = \{1, 2, 3, 4\}$. Define an equivalence relation R by $(x, y) \sim (u, v)$ if x + y = u + v.
- There are seven equivalence class on $X \times X$.
- [(1,1)]; [(1,2)]; [(1,3)]; [(1,4)]; [(3,3)]; [(3,4)]; [(4,4)].

Definition

A $factor\ set$ of X about an equivalence relation R is a set which elements are equivalence classes.

- Let $X = \{1, 2, 3, 4\}$. Define an equivalence relation R by $(x, y) \sim (u, v)$ if x + y = u + v.
- There are seven equivalence class on $X \times X$.
- [(1,1)]; [(1,2)]; [(1,3)]; [(1,4)]; [(3,3)]; [(3,4)]; [(4,4)].
- The factor set

$$\begin{array}{ll} X \times X \diagup R \\ = & \{[(1,1)],[(1,2)],[(1,3)],[(1,4)],[(3,3)],[(3,4)],[(4,4)]\}. \end{array}$$

• Let \mathbb{Z} be the set of integers. We have a factor set \mathbb{Z}_n given by integers module n.

- Let \mathbb{Z} be the set of integers. We have a factor set \mathbb{Z}_n given by integers module n.
- Define

$$a\pmod{n}+b\pmod{n}=a+b\pmod{n},$$

$$(a \pmod{n})(b \pmod{n}) = ab \pmod{n}.$$
 (2)

- Let \mathbb{Z} be the set of integers. We have a factor set \mathbb{Z}_n given by integers module n.
- Define

$$a\pmod{n}+b\pmod{n}=a+b\pmod{n},$$

$$(a \pmod{n})(b \pmod{n}) = ab \pmod{n}. \tag{2}$$

 \bullet \mathbb{Z}_3

Proposition

Let \mathbb{Z}_n be the set of equivalence classes of the integer module n, and $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$. Then

$$\overline{a} + \overline{b} = \overline{b} + \overline{a},$$

$$\overline{a}\overline{b} = \overline{b}\overline{a},$$

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}),$$

$$(\overline{a}\overline{b})\overline{c} = \overline{a}(\overline{b}\overline{c}),$$

$$\overline{a} + \overline{0} = \overline{a},$$

$$\overline{a}\overline{1} = \overline{a},$$

$$\overline{a}(\overline{b} + \overline{c}) = \overline{a}\overline{b} + \overline{a}\overline{c},$$

$$\overline{a} + (\overline{-a}) = \overline{0}.$$

1.5 Arithmetic

Definition

A partial ordering relation on a set X is a relation that is reflexive $(x \le x \text{ for all } s \in S)$, antisymmetric $(x \le y \text{ and } y \le x \text{ implies } x = y)$, and transitive $(x \le y \text{ and } y \le z \text{ implies } x \le z)$. A ordered pair (X, R) is called a partial ordered set if X is a set and R is a partial order relation on X.

Example

The binary relation \leq on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are partial ordering relation. It is not an equivalent relation since $x \leq y$, but $y \not\leq x$.

Example

The binary relation R on \mathbb{Z} given by xRy if and only if $|x| \leq |y|, x, y \in \mathbb{Z}$ is reflexive, transitive, it is neither symmetric nor antisymmetric. Since if $|x| \leq |y|$ and $|y| \leq |x|$, then |x| = |y|. We can not have x = y.

Definition

Let (X, R) be a partial ordering set. If for all $x, y \in X$, either xRy or yRx, that is whenever any two elements are comparable. In this case, (X, R) is called a *totally ordering set*

Example

The binary relation \leq on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are totally ordering relation.

• Let X be a nonempty set. Let R be a binary relation on P(X) given by ARB if and only if $A \subseteq B$.

- Let X be a nonempty set. Let R be a binary relation on P(X) given by ARB if and only if $A \subseteq B$.
- \bullet Then relation R is reflexive, transitive, antisymmetric.

- Let X be a nonempty set. Let R be a binary relation on P(X) given by ARB if and only if $A \subseteq B$.
- \bullet Then relation R is reflexive, transitive, antisymmetric.
- R is partial ordering relation on P(X). Denoted by $(P(X), \leq)$.

- Let X be a nonempty set. Let R be a binary relation on P(X) given by ARB if and only if $A \subseteq B$.
- \bullet Then relation R is reflexive, transitive, antisymmetric.
- R is partial ordering relation on P(X). Denoted by $(P(X), \leq)$.
- It is a total ordering if and only if $X = \{a\}$.

- Let X be a nonempty set. Let R be a binary relation on P(X) given by ARB if and only if $A \subseteq B$.
- \bullet Then relation R is reflexive, transitive, antisymmetric.
- R is partial ordering relation on P(X). Denoted by $(P(X), \leq)$.
- It is a total ordering if and only if $X = \{a\}$.
- If $X = \{a, b\}$, then $P(X) = \{\emptyset, \{a\}, \{b\}, X\}$. Then there is no relation $\{a\}$ and $\{b\}$. X is not a totally ordering set.

Definition

A nonempty subset S of $\mathbb Z$ is well-ordered if S contains a least element.

• \mathbb{N} , \mathbb{Z}^+ are well-ordered sets. But \mathbb{Z} is not a well-ordered set since \mathbb{Z} has not a least element.

Definition

A nonempty subset S of $\mathbb Z$ is well-ordered if S contains a least element.

• \mathbb{N} , \mathbb{Z}^+ are well-ordered sets. But \mathbb{Z} is not a well-ordered set since \mathbb{Z} has not a least element.

Theorem (Principle of well-ordering)

Every nonempty subset of the natural numbers \mathbb{N} is well-ordered.

•

Lemma

Zorn's Lemma: If S is a nonempty partially ordered set such that every chain of S has an upper bound in S, then S has a maximal element.

Theorem (Division Algorithm)

Let a and b be integers, with b > 0. Then there exists an unique integer q and r such that a = bq + r, where $0 \le r < b$.

• Proof: Let $S = \{a - bk \mid k \in \mathbb{Z} \text{ and } a - bk \geqslant 0\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$.

- Proof: Let $S = \{a bk \mid k \in \mathbb{Z} \text{ and } a bk \geqslant 0\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$.
- If $0 \in S$, $\exists k' \in \mathbb{Z}$, such that 0 = a bk', i.e. a = bk'. Let $q = \frac{a}{b}$ and r = 0, then $a = b \cdot \frac{a}{b} + 0$.

- Proof: Let $S = \{a bk \mid k \in \mathbb{Z} \text{ and } a bk \geqslant 0\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$.
- If $0 \in S$, $\exists k' \in \mathbb{Z}$, such that 0 = a bk', i.e. a = bk'. Let $q = \frac{a}{b}$ and r = 0, then $a = b \cdot \frac{a}{b} + 0$.
- If $0 \notin S$, we will show that S is nonempty. If a > 0, then $a b \cdot 0 \in S$. If a < 0, then $a b(2a) = a(1 2b) \in S$.

- Proof: Let $S = \{a bk \mid k \in \mathbb{Z} \text{ and } a bk \geqslant 0\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$.
- If $0 \in S$, $\exists k' \in \mathbb{Z}$, such that 0 = a bk', i.e. a = bk'. Let $q = \frac{a}{b}$ and r = 0, then $a = b \cdot \frac{a}{b} + 0$.
- If $0 \notin S$, we will show that S is nonempty. If a > 0, then $a b \cdot 0 \in S$. If a < 0, then $a b(2a) = a(1 2b) \in S$.
- In either case, S is nonempty. S is a nonempty subset of \mathbb{N} , there exists a smallest number in S. Let $r=a-bq\in S$ be the smallest number in S. Therefore, $a=bq+r, r\geqslant 0$. We now show that r< b. Suppose that r>b. Then a-b(q+1)=a-bq-b=r-b>0. We have $a-b(q+1)\in S$. But a-b(q+1)< a-bq, which contradict the fact that r=a-bq is the smallest number in S. So $r\leq b$. Since $0\notin S, r\neq b$ and so r< b.

• Uniqueness of q and r. Suppose that there exist integers r, r', q, q', such that

$$a = bq + r, \quad 0 \leqslant r < b.$$

$$a = bq' + r', \quad 0 \leqslant r' < b.$$

• Uniqueness of q and r. Suppose that there exist integers r, r', q, q', such that

$$a = bq + r, \quad 0 \leqslant r < b.$$

$$a = bq' + r', \quad 0 \leqslant r' < b.$$

• Assume that r' > r. From the last equation we have

$$bq - bq' = b(q - q') = r' - r.$$

• Uniqueness of q and r. Suppose that there exist integers r, r', q, q', such that

$$a = bq + r, \quad 0 \leqslant r < b.$$

$$a = bq' + r', \quad 0 \leqslant r' < b.$$

• Assume that r' > r. From the last equation we have

$$bq - bq' = b(q - q') = r' - r.$$

• Therefore $b \mid r' - r$ and $0 \le r' - r < r' < b$. This is possible only if r' - r = 0. Hence r = r' and q = q'.

Definition

The greatest common divisor of integers a and b is a positive integer d such that d is a common divisor of a and b and if d' is any other common divisor of a and d, then d'|d. We write $d = \gcd(a, b)$.

Theorem

Let a and b be nonzero integers. Then there exist integers r and s such that gcd(a,b) = ar + bs. Furthermore, the greatest common divisor of a and b is unique.

• Proof: Let $S = \{am + bn | m, n \in \mathbb{Z}, am + bn > 0\}$. Clearly, S is nonempty, hence, S must have a smallest member d = ar + bs by well-ordering principle. We claim that d = gcd(a, b). Write

$$a = dq + r', 0 \le r' < d.$$

• Proof: Let $S = \{am + bn | m, n \in \mathbb{Z}, am + bn > 0\}$. Clearly, S is nonempty, hence, S must have a smallest member d = ar + bs by well-ordering principle. We claim that d = gcd(a, b). Write

$$a = dq + r', 0 \le r' < d.$$

• If r' > 0, then $r' = a - dq = a - (ar + bs)q = a - arq - bsq = <math>a(1 - rq) + b(-sq) \in S$. It is contradict the fact that d is the smallest member of S. Hence, r' = 0 and d divides a. A similar argument shows that d divides b. Therefore, d is a common divisor of a and b.

• Proof: Let $S = \{am + bn | m, n \in \mathbb{Z}, am + bn > 0\}$. Clearly, S is nonempty, hence, S must have a smallest member d = ar + bs by well-ordering principle. We claim that d = gcd(a, b). Write

$$a = dq + r', 0 \le r' < d.$$

- If r' > 0, then $r' = a dq = a (ar + bs)q = a arq bsq = <math>a(1 rq) + b(-sq) \in S$. It is contradict the fact that d is the smallest member of S. Hence, r' = 0 and d divides a. A similar argument shows that d divides b. Therefore, d is a common divisor of a and b.
- Suppose that d' is another common divisor of a and b, and we want to show that d'|d. If we let a = d'h and b = d'k, then d = ar + bs = d'hr + d'ks = d'(hr + ks). So d' must divide d. Hence, d must be the unique greatest common divisor of a and b.

Definition

p is a prime number if the positive numbers that divide p are 1 and p itself. An integer n>1 that is not prime is said to be composite.

Lemma

Let a and b be integers and p be a prime number. If $p \mid ab$, then either $p \mid a$ or $p \mid b$.

• Proof: Suppose that $p \nmid a$, then we will show that p must divide b.

Since gcd(a, p) = 1, there exists integers r and s such that ar + ps = 1.

Then b = b(ar + ps) = (ab)r + p(bs). Since $p \mid ab$ and $p \mid ps$, p must divide b.

Theorem

There exist infinite numbers of primes.

• Proof: Suppose that there are only finite number of primes, say p_1, \dots, p_n . Let $p = p_1 \dots p_n + 1$. Next we will show that p is a prime number, or p has other prime divisor. If p is a prime, it is contradict to there are n primes. If p is not a prime, then p can be divided by some prime q.

Theorem

There exist infinite numbers of primes.

- Proof: Suppose that there are only finite number of primes, say p_1, \dots, p_n . Let $p = p_1 \dots p_n + 1$. Next we will show that p is a prime number, or p has other prime divisor. If p is a prime, it is contradict to there are n primes. If p is not a prime, then p can be divided by some prime q.
- If $q = p_i$ for some $1 \le i \le n$. In this case, p_i must divide $p_1 \cdots p_n + 1$. $p_i \mid p_1 \cdots p_n$. Thus $p_i \mid 1$. This is a contradiction to p_i a prime number. If $q \ne p_j$ for all $1 \le j \le n$, then q is a prime different from p_1, \dots, p_n . It is contradiction to there are finite primes.

Theorem

Fundamental theorem of Arithmetic: Let n be an integer, such that n > 1. Then $n = p_1 p_2 \cdots p_k$, where p_1, p_2, \cdot, p_k are primes(not necessary distinct). Furthermore, this factorization is unique, that is if $n = q_1 q_2 \cdots q_l$, then k = l, and the q_i 's are just the p_i 's rearranged.

• Proof: Uniqueness we will use induction on n. It is true for n=2. Assume that the result holds for all integers $m, 1 \leq m < n$ and $n=p_1p_2\cdots p_k=q_1q_2\cdots q_l$, where $p_1 \leq p_2 \leq \cdots \leq p_k$, and $q_1 \leq q_2 \leq \cdots \leq q_k$.

- Proof: Uniqueness we will use induction on n. It is true for n=2. Assume that the result holds for all integers $m, 1 \leq m < n$ and $n=p_1p_2\cdots p_k=q_1q_2\cdots q_l$, where $p_1 \leq p_2 \leq \cdots \leq p_k$, and $q_1 \leq q_2 \leq \cdots \leq q_k$.
- By lemma of prime, $p_1|q_i$ for some i and $q_1|p_j$ for some j. Because $q_i's$ and $P_j's$ are primes. So $p_1 = q_i$, $q_1 = p_j$. Hence, $p_1 = q_1$, since $p_1 \leq p_j = q_1 \leq q_i = p_1$.

- Proof: Uniqueness we will use induction on n. It is true for n=2. Assume that the result holds for all integers $m, 1 \leq m < n$ and $n=p_1p_2\cdots p_k=q_1q_2\cdots q_l$, where $p_1 \leq p_2 \leq \cdots \leq p_k$, and $q_1 \leq q_2 \leq \cdots \leq q_k$.
- By lemma of prime, $p_1|q_i$ for some i and $q_1|p_j$ for some j. Because $q_i's$ and $P_j's$ are primes. So $p_1 = q_i$, $q_1 = p_j$. Hence, $p_1 = q_1$, since $p_1 \leq p_j = q_1 \leq q_i = p_1$.
- By the induction hypothesis, $n' = p_2 \cdots p_k = q_2 \cdots q_l < n$ and n' has a unique factorization. Hence k = l and $q_i = p_i$ for $i = 1, \dots, k$.

Equivalence

• Existence: Suppose that there is some integers that cannot be written as the product of primes. Let S be the set of all such numbers. $S \subseteq \mathbb{N}$, S has a smallest number, say a.

Equivalence

- Existence: Suppose that there is some integers that cannot be written as the product of primes. Let S be the set of all such numbers. $S \subseteq \mathbb{N}$, S has a smallest number, say a.
- If the only positive factors of a are a and 1, then a is prime, which is a contradiction. Hence $a = a_1 a_2$, where $1 < a_1 < a$ and $1 < a_2 < a$.

Equivalence

- Existence: Suppose that there is some integers that cannot be written as the product of primes. Let S be the set of all such numbers. $S \subseteq \mathbb{N}$, S has a smallest number, say a.
- If the only positive factors of a are a and 1, then a is prime, which is a contradiction. Hence $a = a_1 a_2$, where $1 < a_1 < a$ and $1 < a_2 < a$.
- Neither $a_1 \in S$ nor $a_2 \in S$, since a is the smallest number of S. So $a_1 = p_1 \cdots p_s$ and $a_2 = q_1 \cdots q_l$.
- Therefore $a = p_1 \cdots p_s q_1 \cdots q_l$. So $a \notin S$. It's contradiction to the definition of S.

Proposition

Let a, b, n be integers with n > 0, gcd(a, n) be the greatest common divisor of a and n. Then there is a solution x of the congruence equation $ax \equiv b \pmod{n}$ if and only if gcd(a, n)|b.

0

Proposition

Let a, b, n be integers with n > 0, gcd(a, n) be the greatest common divisor of a and n. Then there is a solution x of the congruence equation $ax \equiv b \pmod{n}$ if and only if gcd(a, n)|b.

•

• Proof: Let d = gcd(a, n). If x is a solution of $ax \equiv b \pmod{n}$, then ax = b + nq for some $q \in \mathbb{Z}$; it follows that d must divide b.

Proposition

Let a, b, n be integers with n > 0, gcd(a, n) be the greatest common divisor of a and n. Then there is a solution x of the congruence equation $ax \equiv b \pmod{n}$ if and only if gcd(a, n)|b.

•

- Proof: Let d = gcd(a, n). If x is a solution of $ax \equiv b \pmod{n}$, then ax = b + nq for some $q \in \mathbb{Z}$; it follows that d must divide b.
- Conversely, assume that d|b. There are integers u, v such that d = au + nv. Multiplying integer $\frac{b}{d}$, we obtain $b = a(\frac{ub}{d}) + n(\frac{vb}{d})$. Put $x = \frac{ub}{d}$; then $ax \equiv b \pmod{n}$ and x is a solution of the congruence.

Corollary

Let a, n be integers with n > 0. Then the congruence equation $ax \equiv 1 \pmod{n}$ has a solution x if and only if a is relatively prime to n.

0

Theorem

The Chinese Remainder Theorem: Let a_1, a_2, \dots, a_k and m_1, m_2, \dots, m_k be integers with $m_i > 0$; assume that $gcd(m_i, m_j) = 1$ if $i \neq j$. Then there is a common solution x of the system of congruences

$$\begin{cases} x \equiv a_1 (\mod m_1) \\ \vdots \\ x \equiv a_k (\mod m_k) \end{cases}$$

• Proof: Put $m = m_1 m_2 \cdots m_k$ and $\widehat{m_i} = \frac{m}{m_i}$. Then m_i and $\widehat{m_i}$ are relatively prime, so there exist an integer l_i such that $\widehat{m_i}l_i \equiv 1 \pmod{m_i}$. Now put $x = a_1\widehat{m_1}l_1 + \cdots + a_k\widehat{m_k}l_k$. Then

$$x = a_i \widehat{m_i} l_i + \sum_{j \neq i} a_j \widehat{m_j} l_j$$

$$\equiv a_i (\mod m_i) + \sum_{j \neq i} 0$$

$$= a_i (\mod m_i).$$

• Example: Let us determine what day of the week January 1 in the year 2030 will be.

- Example: Let us determine what day of the week January 1 in the year 2030 will be.
- Labeling a week as

$$Sunday = \bar{0}$$
, $Monday = \bar{1}$, $Tuesday = \bar{2}$, $Wednesday = \bar{3}$, $Thursday = \bar{4}$, $Friday = \bar{5}$, $Saturday = \bar{6}$.

- Example: Let us determine what day of the week January 1 in the year 2030 will be.
- Labeling a week as

$$Sunday = \bar{0}$$
, $Monday = \bar{1}$, $Tuesday = \bar{2}$, $Wednesday = \bar{3}$, $Thursday = \bar{4}$, $Friday = \bar{5}$, $Saturday = \bar{6}$.

• Suppose that today is January 1, 2023, Sunday. There are 2557 days from January 1, 2030. Now $2557 \equiv 2 \pmod{7}$. We conclude that January 1, 2030 will be Tuesday.

• It is well know that an integer is divisible by 3 if and only if the sum of its digits is a multiple of 3. Let $m = m_k m_{k-1} \cdots m_1 m_0$ be the decimal representation of an integer m, where $0 \le m_i \le 9$. Then $m = m_k 10^k + m_{k-1} 10^{k-1} + \cdots m_1 10 + m_0$. Note that $10 \equiv 1 \pmod{3}$, i.e. $\overline{10} = \overline{1}$. Then $\overline{10}^i = \overline{1}^i = \overline{1}$ for $i \ge 0$. It follows that $m \equiv m_k + m_{k-1} + \cdots + m_1 + m_0 \pmod{3}$.

• There is an ancient problem in an Indian manuscript of the 7th Century. There are some eggs in a basket. When eggs are removed k = 2, 3, 4, 5, 6 times, there is 1 eggs left, and when k = 7, there is no eggs left. What is the smallest number of eggs in the basket.

Let x be the number of eggs in the basket. The conditions require that $x \equiv 1 \pmod{k}$ for k = 2, 3, 4, 5, 6 and $x \equiv 0 \pmod{k}$ for k = 7. Clearly this amounts to x satisfying the four congruences

$$x \equiv 1 (\mod 3),$$

$$x \equiv 1 (\mod 4),$$

$$x \equiv 1 (\mod 5),$$

$$x \equiv 0 (\mod 7).$$

• Furthermore, the equations are equivalent to

$$x \equiv 1 \pmod{60},$$

 $x \equiv 0 \pmod{7}.$

By the Chinese Remainder Theorem, there is a solution to the congruences equations. Applying Theorem 49, we have $m = 420, m_1 = 60, m_2 = 7$, so that $\widehat{m}_1 = 7, \widehat{m}_2 = 60$; also $l_1 = 43, l_2 = 2$.

• Furthermore, the equations are equivalent to

$$x \equiv 1 \pmod{60},$$

 $x \equiv 0 \pmod{7}.$

By the Chinese Remainder Theorem, there is a solution to the congruences equations. Applying Theorem 49, we have $m = 420, m_1 = 60, m_2 = 7$, so that $\widehat{m}_1 = 7, \widehat{m}_2 = 60$; also $l_1 = 43, l_2 = 2$.

• Therefore one solution is given by $x = 1 \cdot 7 \cdot 43 + 0 \cdot 60 \cdot 2 = 301$. If y is any other solution, note that y - x must be divisible by $60 \times 7 = 420$. Thus the general solution is x = 301 + 420q, $q \in \mathbb{Z}$. So the smallest positive solution is 301.