Workbook

Chapter 1. Sets

- 1. Let A, B and C be sets. Show that
 - $(1) (A \cap B) \setminus B = \phi.$
 - $(2) (A \cup B) \setminus B = A \setminus B.$
 - (3) $(B \cup C) \setminus A = (B \setminus A) \cup (C \setminus A)$.
 - $(4) (B \cap C) \setminus A = (B \setminus A) \cap (C \setminus A).$
- 2. Let A, B, C be sets. Prove that
 - $(1) \ A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$
 - (2) $(A \setminus B) \setminus C = A \setminus (B \cup C)$.
- 3. Let X, Y be finite sets. Prove that

$$|X \cup Y| + |X \cap Y| = |X| + |Y|.$$

- 4. Let $X = \{\emptyset\}$. What is P(X)?
- 5. Write down the power sets of $A = \{a, b, c, d\}$ and $B = \{\phi, \{\phi\}\}\$.
- 6. Show that $f: \mathbb{R}^+ \longrightarrow \mathbb{R}: x \longmapsto log_{10}(x)$ is a bijection.
- 7. Define the order of a set A is the number of elements in A, denote as |A|. How many maps from A to B if |A| = n and |B| = m?
- 8. Show that a map is invertible if and only if it is both injective and surjective.
- 9. Let $A = \{0, 1, 2, 3, \dots\}, B = \{1, 2, 3, \dots\}.$ Prove that $A \cong B$.

- 10. Let X be a set, A be a subset of X. Is $f: P(X) \to P(X): A \mapsto A'$ a bijection? Why?
- 11. Is the relation $aRb \Leftrightarrow ab > 0$ for $a, b \in \mathbb{R}$ an equivalent relation? Why?
- 12. Define a relation R on \mathbb{R}^2 by stating that $(a,b) \sim (c,d)$ if and only if $a^2 + b^2 \leq c^2 + d^2$. Show that \sim is reflexive and transitive, but it is not symmetric.
- 13. Give all partitions on $A = \{1, 2, 3, 4\}.$
- 14. Write the addition sum of all elements in \mathbb{Z}_7 .
- 15. Write the multiplication product of all elements in \mathbb{Z}_8 .
- 16. Write down the tables of $(\mathbb{Z}_7, +)$ and (\mathbb{Z}_7, \cdot) .
- 17. Let X be a set and R is a relation of X. Define xRy if x|y. Is R an equivalence relation, partial ordering relation or totally ordering relation?
- 18. Let a be a nonzero integer and $n \neq 0$ be a natural number. Then gcd(a, n) = 1 if and only if there exists a multiplication inverse b for a(mod n); that is, a nonzero integer b such that $ab \equiv 1 \pmod{n}$.
- 19. Let a and b be nonzero integers. Then there exist integers r and s such that gcd(a,b) = ar + bs.
- 20. Calculate gcd(a, b) and find integers r and s such that gcd(a, b) = ar + bs.
 - (1) a=15, b=26; (2) a=165, b=234; (3) a=48, b=120.
- 21. Define the **least common multiple** of two nonzero integers a and b, denoted by lcm(a, b), to be the nonnegative integer m such that both a and b divide m, and if a and b divide any other integer n, then m also divides n. Prove there exists a unique least common multiple for any two integers a and b.
- 22. Show that lcm(a,b) = ab if and only if qcd(a,b) = 1
- 23. If $d = \gcd(a, b)$ and $m = \operatorname{lcm}(a, b)$, prove that dm = |ab|.

Chapter 2. Groups

- 1. Define $a \circ b = a + b + ab$ for $\forall a, b \in \mathbb{N}$. Is (\mathbb{N}, \circ) a group?
- 2. Show that $(\mathbb{Z}_n, +)$ is a group, but (\mathbb{Z}_n, \cdot) is not a group.
- 3. Let (G, \cdot) be a group, then G is an abelian group if and only if $\forall a, b \in G, (ab)^2 = a^2b^2$.
- 4. Let G be a finite group, $\forall g \in G$, then the order of g is finite.
- 5. Let G be a group with order |G| = n. S is a subset of G, with $|S| > \frac{n}{2}$. Show that $\forall g \in G$, there exist $a, b \in S$ such that g = ab.
- 6. Let a,b be two elements of a group G, and $aba=ba^2b,a^3=1,b^{2n-1}=1.$ Then b=1.
- 7. Show that the intersection of two subgroups of a group G is a subgroup of G.
- 8. Let H be a subgroup of G, If $g \in G$, show that

$$gHg^{-1} = \{g^{-1}hg|h \in H\}$$

is also a subgroup of G.

- 9. Prove pr disprove: If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.
- 10. Let G be a group and $g \in G$. Show that the center of G, $Z(G) = \{x \in G | gx = xg, \forall g \in G\}$ is a subgroup of G.
- 11. Let H be a subgroup of G and $C(H) = \{g \in G | gh = hg, \forall h \in H\}$. Prove C(H) is a subgroup of G centralizer of H in G.
- 12. Give the order of every element in A_4 .
- 13. Let $\tau = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$. What is $\langle \tau \rangle$.
- 14. Find out all subgroup of S_3 .

15. Write down the order of every element in \mathbb{Z}_7 and \mathbb{Z}_{10} . A:

$$\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}\$$

$$|\overline{0}| = 1, |\overline{1}| = 7, |\overline{2}| = 7, |\overline{3}| = 7, |\overline{4}| = 7, |\overline{5}| = 7, |\overline{6}| = 7.$$

- 16. Find out all subgroups of \mathbb{Z}_8 . What are cyclic subgroups of \mathbb{Z}_8 ?
- 17. Let G be a group, $a, b \in G$, and ab = ba, |a| = m, |b| = n, gcd(m, n) = 1. Show that |ab| = mn.
- 18. Show that the group with prime order is a cyclic group.
- 19. Let G be a group, g in G, |g| = mn, and (m, n) = 1, then g = ab where |a| = m, |b| = n, and $a, b \in G$.
- 20. Let a, b be elements of a group G such that $a^3 = b^2 = e, (ab)^2 = e, a^2 \neq e, b \neq e$. What is < a, b >.
- 21. Let a, b be elements of a group G such that $a^3 = b^2 = e, ab = ba, a^2 \neq e, b \neq e$. What is < a, b >
- 22. Let G be a finite abelian group. Prove that the product of all the elements of G equals the product of all the elements of G of order 2.
- 23. (Wilson's Theorem) If p is a prime, then $(p-1)! = -1 \pmod{p}$.
- 24. Find out all permutations of the set $X = \{a, b, c, d\}$.
- 25. Computing the product of permutation: (124)(234), (3124)(4561).
- 26. Please write (456)(567)(761) as product of transpositions.
- 27. What is S_4 ?
- 28. Let G be a group and define a map $\lambda_g: G \longrightarrow G$ by $\lambda_g(a) = ga$. Prove that λ_g is a permutation of G.
- 29. Write down the dihedral group of D_5 .
- 30. Show that the order of cycle $(i_1i_2\cdots i_k)$ is k.

Chapter 3. Properties of. groups

- 1. Find out all subgroups of A_4 with order 2 and 3.
- 2. Suppose that G is a finite group with 60 elements. What are the orders of possible subgroups of G?
- 3. List the left and right cosets of subgroup $\langle 3 \rangle$ in group U(8).
- 4. Suppose that [G:H]=2. If a and b are not in H, show that $ab \in H$.
- 5. Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$. What are left cosets of H in A_4 .
- 6. What are right cosets of $H = \langle \overline{4} \rangle$ in \mathbb{Z}_{12} .
- 7. Let H and K be subgroups of G, and |H| = 12, |K| = 35. What is $H \cap K$?
- 8. Let $n \neq 0$. Prove that $\mathbb{Z} \cong n\mathbb{Z}$
- 9. Prove or disprove $U(8) \cong \mathbb{Z}_4$.
- 10. Prove S_4 is not isomorphic to D_{12} .
- 11. Let $G = \{(a,b)|a,b \in \mathbb{R}, a \neq 0\}$ with (a,b)(c,d) = (ac,ad+b) be a group, $K = \{(1,b)|b \in \mathbb{R}\}$. Show that $G/K \cong \mathbb{R}^*$.
- 12. Define the center of a group G to be the set $C(G) = \{x \in G | xg = gx, \forall g \in G\}$. Show that C(G) is a normal subgroup of G.
- 13. Let $\phi : \mathbb{Z} \to \mathbb{Z} : m \mapsto 7m$. Prove that ϕ is a group homomorphism. Find the kernel and the image of ϕ .
- 14. Find out all possible homomorphism from $\mathbb{Z}_7 \longrightarrow \mathbb{Z}_{12}$.
- 15. Let A be an $m \times n$ matrix. Show that map

$$\phi: \mathbb{R}^n \to \mathbb{R}^m: \alpha \mapsto A\alpha$$

is a homomorphism.

- 16. Let $G = \{(a, b) | a, b \in \mathbb{R}, a \neq 0\}$ with (a, b)(c, d) = (ac, ad + b) be a group, $K = \{(1, b) | b \in \mathbb{R}\}$. Show that $G/K \cong \mathbb{R}^*$.
- 17. In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$. What is H + N and $H \cap N$.
- 18. What is the $Aut(\mathbb{Z}_8)$? Is $Aut(\mathbb{Z}_8)$ a cyclic group?
- 19. Let $K_4 = \{(1), (12)(34), (13)(24), (14)(23)\}$. What is $Aut(K_4)$?
- 20. Let $G = \{e, g, g^2, g^3\}$. What is Aut(G)?
- 21. Let $G = \{e, g, g^2, \dots, g^{n-1}\}$. What is Aut(G)?

Chapter 4. Rings

- 1. Show that $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$ is a domain.
- 2. Find out all zero divisors of \mathbb{Z}_6 .
- 3. Prove that $R = \left\{ \begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix} | , x, y \in \mathbb{R} \right\}$ is a ring.
- 4. What are zero divisor of ring $R = \{ \begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix} | , x, y \in \mathbb{R} \}.$
- 5. Let p be a prime. Prove that $(\mathbb{Z}_p, +, \cdot)$ is a field.
- 6. Let I and J be ideals of ring R.
 - (1) Prove that $I \cap J$ is an ideal of R.
 - (2) Is $I \cup J$ an ideal?
- 7. Let I and J be ideals of ring R. Define $IJ = \{ \sum_i a_i b_i | a_i \in I, b_i \in J \}$. Prove that IJ is an ideal of R
- 8. Let I and J be ideals of ring R. Define $I+J=\{a+b|a\in I,b\in J\}$. Prove that I+J is an ideal of R
- 9. Let I be an ideal of R. Define $r(I) = \{r \in R | ru = 0, \forall u \in U\}$. Prove that r(I) is an ideal of R.
- 10. Let $a, b \in \mathbb{Z}$. What is $\langle a, b \rangle$?
- 11. Find out all ring homomorphisms of \mathbb{Z}_{12} to \mathbb{Z}_6 .
- 12. Find out all prime ideals of \mathbb{Z}_{18} .
- 13. Let CharR = p, p be a prime. Then $(a+b)^p = a^p + b^p$, $a, b \in \mathbb{R}$.
- 14. Find out all prime ideals and maximal ideal of \mathbb{Z}_{16} .
- 15. Let

$$R = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \mid a, c, d \in \mathbb{R} \right\}$$

and

$$I = \left\{ \begin{pmatrix} r & 0 \\ s & 0 \end{pmatrix} \mid r, s \in \mathbb{R} \right\}.$$

Then R is a ring under addition and multiplicartion of matrix. Moreover, I is a maximal ideal of R.

- 16. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}[\sqrt{2}, \sqrt{3}].$
- 17. Let $a, b \in \mathbb{R}, b \neq 0$. Show that $\mathbb{R}(a + bi) = \mathbb{C}$.
- 18. Prove or disprove that $\mathbb{Q}(\sqrt{3}) \cong \mathbb{Q}(\sqrt{-3})$.
- 19. Prove that $\mathbb{Q}(4-i) = \mathbb{Q}(1+i)$.
- 20. What is the quotient field of Z.
- 21. Find out algebraic elements.

(1)
$$\sqrt{24}$$
; (2) $\sqrt{13}$; (3) e^2 ; (4) $\pi + 6$; (5) $\pi - e$.

- 22. Show that a is algebraic over F if and only if a^2 is algebraic over F.
- 23. Show that $\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}/\langle x^3 2 \rangle$.
- 24. Let $\frac{1}{1+2\sqrt[3]{2}+3\sqrt[3]{4}} = a + b\sqrt[3]{2} + c\sqrt[3]{4}$, $a, b, c \in \mathbb{Q}$. Compute a, b, c.
- 25. Give the minimal polynomial over $\mathbb Q$ of these elements:

(1)
$$\sqrt{2} + \sqrt{-3}$$
; (2) $\sqrt[3]{3} + \sqrt{3}$; (3) $\sqrt[3]{2} - \sqrt[3]{4}$.