

# **Treatment Effects**

## Qingqing Zong School of Public Economics and Administration SHUFE

主讲教师: 宗庆庆



- 上海财经大学数量经济学博士、北京大学光华管理学院博士后
- 美国宾夕法尼亚大学访问学者
- 上海财大公共经济与管理学院副院长,副教授
- 北京大学经济政策研究所兼职研究员
- 研究方向:劳动经济、产业经济、城市经济
- 在Research Policy,《经济研究》,《金融研究》等中英文权威 学术期刊上发表论文多篇
- 研究成果获得"全国财政理论研究成果奖"等奖项
- 主持国家自然科学基金项目一项,参与国家和省部级课题多项, 主持或参与财政部,卫计委等国家部委委托的横向课题多项

## **Course Information**



- E-mail: <u>zong.qingqing@mail.shufe.edu.cn</u>Office: Room 518
- Office Hour: Tuesday 2-4pm or by appointment



## Overview



- Preliminaries
  - Dummy Variables
- Introduction to Treatment Model
  - ➢ Basic Setup
  - Counterfactual Framework
  - ➢ Randomization

## Preliminaries: Dummy Variables



- In econometrics, qualitative information is usually captured by defining a zeroone variable. It's called a dummy variable or a binary variable.
- For example,  $female_i = \begin{cases} 1 & \text{if individual } i \text{ is female} \\ 0 & \text{if individual } i \text{ is male} \end{cases}$ .
- In regression, parameters of dummy variables have natural interpretations: differences between groups divided by dummy variables.
- For more examples, dummy variables can be races, industries, regions, etc.
- Thus, dummy variables are commonly used in policy analysis or program evaluations when the policy or program takes place with only one level, which is exactly the case we'll discuss.

## Dummy Variables



• This is an example in Wooldridge's textbook when the gender difference in wage in constant as:  $wage = \beta_0 + \delta_0$  female  $+ \beta_1 educ + u$ .



6



## Dummy Variables

- If there're male and female both married or single in study of wage, we can use three dummy variables in the regression.
- $\ln(wage) = \alpha_0 + \alpha_1 marrmale + \alpha_2 marrfem + \alpha_3 singfem + \cdots$
- Or, we can use interactions of dummy variables.
- $\ln(wage) = \beta_0 + \beta_1 female + \beta_2 marr + \beta_3 marr \cdot female + \cdots$
- In both examples, we regard the single male as a baseline and allow the "married effect" to differ between male and female.
- $\alpha_1, \alpha_2, \alpha_3$  capture the differences between other groups and the baseline.
- Note that we should introduce m-1 dummy variables to avoid dummy variable trap when the qualitative variable in the model contains m categories.

## Dummy Variables



- When the dependent variable is binary, we have a binary choice model.
- Linear Probability Model:  $E(Y|X) = X\beta$
- Probit Model:  $E(Y|X) = \Phi(X\beta)$  where  $\Phi(\cdot)$  is the CDF of Standard Normal Distribution.
- Logit Model:  $E(Y|X) = e^{X\beta}/(1 + e^{X\beta})$

## Setup of Treatment Model



- Rubin (1974), Holland (1986), Pearl (2000), Rosenbaum (2002):
- $\triangleright$  One has two potential outcomes,  $Y_1$  and  $Y_0$ .
- $\succ$  *Y*<sub>1</sub> describes what would happen if one is treated.
- >  $Y_0$  describes what would happen if one is not treated.
- $\succ$  A binary variable *D* represents for the treatment.
- > So only one of  $Y_d$  is observed depending on D:

 $\succ Y = D \cdot Y_1 + (1 - D) \cdot Y_0$ 

- D can be many interested variables, like medicine, education, job-training.
- We're interested in the causal effect of D on Y.
- > In other words, the difference between  $Y_1$  and  $Y_0$ , so-called treatment effects.

## Three No-Effect Concepts



- Exact Same:  $Y_1 = Y_0$
- Exchangeability:  $P(Y_0 \le t_0, Y_1 \le t_1) = P(Y_1 \le t_0, Y_0 \le t_1) \text{ for } \forall t_0, t_1$
- Zero mean(or median):  $E(Y_1) = E(Y_0)$  or  $Med(Y_1) = Med(Y_0)$
- Their relation:

Exact Same  $\Rightarrow$  Exchangeability  $\Rightarrow$  Zero mean/median

## Definition of Treatment Effects



- These treatment effects are defined by statistics:
- > Mean treatment effects:  $E(Y_1 Y_0)$  or  $E(Y_1 Y_0|X)$
- ≻ Quantile treatment effects:  $Q_{Y_1}(\tau|X) Q_{Y_0}(\tau|X)$
- > Distributional treatment effects:  $F_{Y_1|X}(y) F_{Y_0|X}(y)$
- These mean treatment effects are defined by populations:
- Average treatment effects (ATE):  $E(Y_1 Y_0)$
- Average treatment effects on treated (ATT):  $E(Y_1 Y_0 | D = 1)$
- Average treatment effects on untreated (ATUT):  $E(Y_1 Y_0 | D = 0)$
- ATE is useful when treatment has broad applicability.
- ATT is mostly for those "focused" program. We don't care the college return for one who doesn't finish senior school.

## Counterfactual Framework



- For example, we want to know the return of education.
- For college graduates who have D=1, we observe their wage  $Y_1$ .
- And for those not entering college, we observe their wage  $Y_0$ .
- So, we only observe one of  $Y_1$  and  $Y_0$  for an individual.

$$E(Y_1 - Y_0 | D = 1) = E(Y | D = 1) - E(Y_0 | D = 1)$$
  

$$E(Y_1 - Y_0 | D = 0) = E(Y_1 | D = 0) - E(Y | D = 0)$$

- The key is how to estimate the **counterfactual** results.
- For a treated unit, Y(0) is called the counterfactual. For a untreated unit, Y(1) is the counterfactual.

## Random Assignment/Experiment



• Random assignment guarantees the treatment is independent of everything (including all observed X and unobserved  $\epsilon$  which may affect  $Y_d$ ). In technical notation:

### $[Y_1, Y_0] \bot \mathbf{D}$

• Under such assumption, all the characteristics of the individuals are equally distributed between treated and untreated groups (i.e., the proportions are the same).

$$E(Y_0|D = 1) = E(Y_0|D = 0) = E(Y_0)$$
  

$$E(Y_1|D = 1) = E(Y_1|D = 0) = E(Y_1)$$

• Thus

$$E(Y|D = 1) - E(Y|D = 0) = E(Y_1|D = 1) - E(Y_0|D = 0)$$
  
=  $E(Y_1 - Y_0) = ATE = ATT = ATUT$ 

### 2024/3/24

Estimation

### • It's same to run OLS for the following equation:

 $Y_i = \alpha + \beta D_i + U_i$ 

- $\hat{\beta} = \bar{Y}_{treated} \bar{Y}_{control}$
- It's same to the difference between sample averages of two groups.



• Under randomization assumption: treatment effects are estimated as,





# Relation between Randomization and Regression

• Consider the following linear regression:

$$Y_i = \alpha + \beta D_i + U_i$$

• The strictly exogenous assumption is

$$E(U_i|D_i = 1) = E(U_i|D_i = 0) = 0$$

• Thus

$$E(Y_i|D_i = 1) - E(Y_i|D_i = 0)$$
  
=  $(\alpha + \beta + E(U_i|D_i = 1)) - (\alpha + E(U_i|D_i = 0)) = \beta$ 

## Three Types of Experiments



- Controlled Experiment
- Impossible in Social Science
- Randomized Experiment
- ≻Rarely exists in Social Science
- ≻Hard to be accomplished
- ≻Bears very expensive cost or may be blamed ethically
- Natural Experiment
- ≻Can be viewed as quasi-randomized experiment

## Internal and External Validity



- Internal Validity: our conclusion truly represents the sample.
- External Validity: our conclusion can be applied to other populations for prediction and so on.
- Threats to Internal Validity:
- Psychological effect: If one knows being treated, he may feel better. That's why control group will take placebo in medicine experiments. But placebo isn't available for many other treatments, like job-training.
- Substitution effect: If one is told to sleep less or do less sport, he may make up for it in other ways.
- Threats to External Validity:
- Non-participation effect: The sample is different from the whole population. e.g., if data is collected on Internet, those not using Internet are excluded.

## Example 1



• Hongbin Cai, Yuyu Chen, Hanming Fang, Li-An Zhou, The Effect of Microinsurance on Economic Activities: Evidence from a Randomized Field Experiment, *Review of Economics and Statistics*,2015,97(2).

|                                              | Whole  |       | By Group |       |        |       |        |       |         |
|----------------------------------------------|--------|-------|----------|-------|--------|-------|--------|-------|---------|
|                                              | Sam    | iple  | Con      | trol  | LI     | G     | HI     | G     | p-value |
| Variables                                    | Mean   | SD    | Mean     | SD    | Mean   | SD    | Mean   | SD    |         |
| Pre-Experiment Variables:                    |        |       |          |       |        |       |        |       |         |
| No. of Sows in Dec. 2006                     | 16.3   | 21.4  | 17.9     | 26.5  | 13.2   | 14.2  | 16.9   | 21.5  | 0.17    |
| No. of Sows in Sept. 2007                    | 29.1   | 31.8  | 28.8     | 43.1  | 28.1   | 20.5  | 29.8   | 29.4  | 0.90    |
| No. of Sows in Dec. 2007                     | 31.2   | 34.5  | 32.5     | 46.5  | 26.4   | 23.7  | 32.5   | 31.6  | 0.43    |
| No. of Pigs in Dec. 2006                     | 356.2  | 228.4 | 363.9    | 248.3 | 338.3  | 228.1 | 361.3  | 218.4 | 0.61    |
| Village Population                           | 1029.1 | 677.8 | 1048.7   | 654.2 | 1017.9 | 672.0 | 1025.0 | 694.5 | 0.93    |
| No. of Villagers as Migrant Workers          | 196.0  | 116.4 | 188.8    | 127.1 | 193.7  | 103.1 | 200.8  | 117.5 | 0.64    |
| Ave. Villager Age                            | 33.2   | 2.1   | 33.1     | 2.1   | 33.4   | 2.3   | 33.2   | 1.9   | 0.45    |
| Ave. Villager Education (Years)              | 5.95   | 0.75  | 6.00     | 0.78  | 6.00   | 0.77  | 5.90   | 0.73  | 0.40    |
| Fraction Male in Village                     | 0.54   | 0.03  | 0.54     | 0.03  | 0.55   | 0.03  | 0.54   | 0.02  | 0.31    |
| Land per Household (Mu)                      | 4.31   | 1.97  | 4.09     | 1.91  | 4.28   | 1.95  | 4.43   | 2.00  | 0.31    |
| Log House Value                              | 9.83   | .63   | 9.87     | .61   | 9.75   | .63   | 9.84   | .63   | 0.30    |
| No. of Surnames in the Village               | 5.36   | 2.68  | 5.41     | 3.08  | 5.19   | 2.47  | 5.42   | 2.57  | 0.72    |
| No. of Villagers in New Medical Coop. Scheme | 551.5  | 300.7 | 560.3    | 322.3 | 532.1  | 299.2 | 556.9  | 291.2 | 0.72    |
| No. of Households Receiving Gov. Subsidy     | 182.2  | 92.2  | 183.9    | 90.4  | 178.8  | 99.6  | 183.0  | 89.5  | 0.90    |





• 宗庆庆、张熠、陈玉宇, 2020: 《老年健康与照料需求: 理论和来自随机 实验的证据》,《经济研究》,第2期。

| 变量↓     | 实验组。      | 控制组↔       | 差异₀     | p-value. |
|---------|-----------|------------|---------|----------|
| 年龄↔     | 67.717.   | 68.897.    | 1.18.   | 0.06* 🖓  |
| 是否男性。   | 0.57 ~    | 0.62 +2    | 0.05 ~  | 0.07* 🖓  |
| 是否已婚。   | 0.847 .   | 0.832 +    | -0.01 @ | 0.47 .   |
| 是否城镇户口。 | 0.495 -   | 0.605 +2   | 0.11.   | 0.03***  |
| 受教育年限。  | 6.576 -   | 6.51 +     | -0.07 🕫 | 0.75 @   |
| 子女数量。   | 2.316     | 2.525 +    | 0.21 .  | 0.16     |
| 与子女同住。  | 0.308 @   | 0.269 +    | -0.04 @ | 0.11 @   |
| 是否退休↔   | 0.952 +   | 0.975 +    | 0.02 ~  | 0.14 .   |
| 月收入(元)。 | 1878.554+ | 1883.363 @ | 4.81 @  | 0.97 ₀   |

表 平衡性检验↔

## Violations to Randomization



- In economics, our data is rarely from experiments.
- Consider the case:
- ≻ Half are Females with  $Y_1 = 70$  and  $Y_0 = 75$ . And 80% take the treatment.
- >Others are Males with  $Y_1 = 50$  and  $Y_0 = 55$ . And 20% take the treatment.

So E(Y|D = 1) - E(Y|D = 0) = 66 - 59 = 7. Positive.

• Because of unbalance of observables (here is gender), we have overt bias. To solve it, we should control for covariates.

## Violations to Randomization



- Consider the case of college:
- ≻ Half are of high ability with  $Y_1 = 70$  and  $Y_0 = 50$ .
- >Others are of low ability with  $Y_1 = 40$  and  $Y_0 = 30$ .
- Figh ability goes to college while low ability not, then E(Y|D = 1) E(Y|D = 0) = 70 30 = 40.
- > Much higher than those of high ability (20) or low ability (10).
- Because of unbalance of unobservables (here is ability), we have hidden bias. To solve it, we may need some instruments.



## Selection on Observables and Unobservables

- Selection on observables (like gender):

- ≻Only overt bias, no hidden bias.
- Selection on unobservables (like ability):  $f(Y_d|D,X) \neq f(Y_d|X)$  and  $f(Y_d|D,X,\varepsilon) = f(Y_d|X,\varepsilon)$ or  $E(Y_d|D,X) \neq E(Y_d|X)$  and  $E(Y_d|D,X,\varepsilon) = E(Y_d|X,\varepsilon)$

≻Have hidden bias.