Potential Outcomes Causal Model

Rui Wang

Do public assistance increase the number of paupers (Yule, 1899)

Yule wants to know if public assistance increase the number of paupers in England

$$Pauper = \alpha + \delta Outrelief + \beta_1 Old + \beta_2 Pop + u$$

- Data from 1871 and 1881 census
- Pauper the growth rate of pauper
- Outrelief the growth rate of out-relief ratio (Measures on the strength of public assistance)
- Old and Pop are the growth rates of people aged above 65 and population

Results

Source	SS	d f	MS	Number of ol		32
Model Residual	5875.32014 2551.89861	3 28	1958.44005 91.1392359	R-squared	= = =	21.49 0.0000 0.6972 0.6647
Total	8427.21875	31	271.845766	- Adj R-square Root MSE	ed = =	9.5467
paup	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
outrelief old pop _cons	.7520945 .055602 3107383 63.18774	.1349873 .2233568 .0668514 27.14388	0.25 -4.65	0.000 .475! 0.805 401! 0.000 447! 0.027 7.58	9236	1.028603 .5131276 1737995 118.7895

A 10-percetage-point change in the out-relief growth rate is associated with a 7.5-percentage-point increase in the pauperism growth rate.

Does public assistance increase pauperism?

Correlation and causality

- 1. Correlation does not mean causality
 - Mortality rate due to drowning increases, when ice cream consumption increase
 - Did the ice cream cause death due to drowning?
 - Every morning, when the rooster crows, the sun rises
 - Did the rooster crowing cause the sun to rise?

Correlation and causality

- 2. No observed correlation does not mean no causality
- Examples from Scott Cunningham
 - A sailor is sailing her sailboat across a lake
 - Wind blows, and she perfectly counters by turning the rudder
 - The same aliens observe from space and say "Look at the way she's moving that rudder back and forth but going in a straight line. That rudder is broken."
 - So they send her a new rudder

No correlation doesn't mean no causality. Artwork by Seth Hahne.

ED and Causality

- 1. Many ED questions are policy and causal questions.
 - We want to know the causal effect of policy changes on outcomes
 - Does education increase individuals' earnings?
 - Does class size affect academic performance?
 - Does attending college increase social mobility?
 - Does monetary incentive increase teachers' performance?
 - Does health insurance increase individuals' health status?
 - Does an increase in administrative burden reduce citizens' satisfaction?

•

Public policy and causality

- 2. Policy recommendations that ignore causality can backfire
 - If Yule's (1899) estimated relationship between public assistance and pauper is causal, we want to cut public assistance to combat pauperism.
 - Another example is hospital and health (from Angrist and Pischke, 2009)
 - 2005 NHIS, 1 poor health-5 excellent health

Groupz	Sample Size	Mean Health Status	Std. Error
Attend hospital	7,774	3.21	0.014
Not attend hospital	90,049	3.93	0.003

- Does going to hospital make people sicker?
- Can we improve peoples' health by closing hospitals?

Causality intuition

- A causal effect is defined as a comparison between the actual state of the world and the counterfactual state of the world.
 - Example: treatment in hospital

Does ACT preparation-class increase ACT scores

Student names	ACT score	Attend preparation- class?
1	14	Yes
2	22	No
3	18	Yes
4	29	No
5	14	Yes
6	24	No
7	36	No
8	22	No
9	25	No
10	32	Yes

- In 2020, Lakeview High School offered an ACT Pre-class to help their students prepare for ACT (American College Test).
- In the same year, 10 students took the ACT. The table on the left shows the ACT scores (Y_i) for those students as well as whether they had attended the ACT preclass.
- Do you think the ACT preparation-class

Introduction to Neyman causal model (1923)

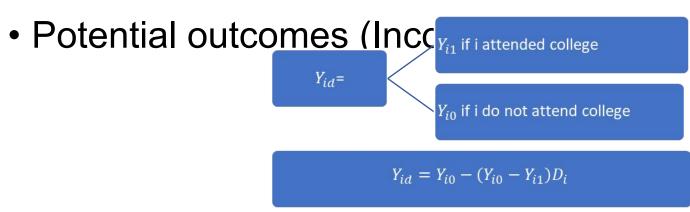
Rubin 1974

• Let the treatment (college attendance) be a binary (dummy)

variable:

 D_i =1 if i attended college D_i =0 if i did not attend college

Where *i* indexes an individual observation, such as a person



Concepts

Individual treatment effects or causal effects

$$\delta_i = Y_{i1} - Y_{i0}$$

- Average treatment effect (ATE) 平均干预效应
 - The average treatment effect is the population average of all i individual treatment effects

$$E[\delta_i] = E[Y_{i1} - Y_{i0}] = E[Y_{i1}] - E[Y_{i0}]$$

Policymakers care about average treatment effects

The Fundamental problem of causal inference

- It is impossible to observe both Y_{i1} and Y_{i0} for the same individual and so individual causal effects, δ_i , are unknowable.
- ATE is a quantity that cannot be calculated but need to be estimated.

Other treatment effects of interests

- Average treatment effect on the treated (ATT) 干预组干预效应
 - The average treatment effect on the treatment group is equal to the average treatment effect conditional on being a treatment group member

$$ATT = E[Y_{i1} - Y_{i0}|D_i = 1] = E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 1]$$

- When do policymakers want to know ATT?
 - Free and reduced-price lunch
 - Need based scholarship
 - Anti-poverty program

Other treatment effects of interests

- Average treatment effect on the untreated (ATU)未干预组干预效应
 - The average treatment effect on the untreated group is equal to the average treatment effect conditional on being untreated:

$$ATU = E[Y_{i1} - Y_{i0}|D_i = 0] = E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0]$$

- Do ATT = ATU? Why?
- Among ATE, ATT, and ATU, ATE and ATT are the two most common ones of interest.

Identifying Y_1 and Y_0

- In the previous example, we do not observe Y_1 and Y_0 for the same students at the same time.
- Thus, we can not estimate the causal impact of attending preparation class and students' performance

Student names	ACT score	Attend preparation- class? (D_i)
1	14 (Y_1 for student 1)	Yes (1)
2	22 (Y ₀ for student 2))	No (0)
3	$18(Y_1 \text{ for student 3}))$	Yes (1)
4	29(Y ₀)	No (0)
5	14(<i>Y</i> ₁)	Yes (1)
6	24(<i>Y</i> ₀)	No (0)
7	36(Y ₀)	No (0)
8	22(Y ₀)	No (0)
9	25(Y ₀)	No (0)
10	32(Y ₁)	Yes (1)

ACT preparation-class and ACT scores with full knowledge

Students	Y_{i1}	Y_{i0}	$\delta_i = Y_{i1} - Y_{i0}$	D_i
1	14	4	10	1
2	18	22	-4	0
3	18	4	14	1
4	25	29	-4	0
5	14	7	7	1
6	36	24	12	0
7	24	36	-12	0
8	18	22	-4	0
9	11	25	-14	0
10	32	29	3	1

- In 2020, Lakeview High School offered an ACT Pre-class to help their students prepare for ACT (American College Test).
- In the same year, 10 students took the ACT. The table on the left shows the ACT scores (Y_i) for those students as well as whether they had attended the ACT pre-class.
- In this example, what are the ATE,
 ATT, and ATU of the program?
 - What are the differences in ACT between the treated and the untreated group without the program?

ACT preparation-class and ACT scores with full knowledge (2)

Student	Y_{i1}	Y_{i0}	$\delta_i = Y_{i1} - Y_{i0}$	D_i
1	14	4	<mark>10</mark>	1
2	18	22	-4	0
3	18	4	<mark>14</mark>	1
4	25	29	-4	0
5	14	7	<mark>7</mark>	1
6	36	24	12	0
7	24	36	-12	0
8	18	22	-4	0
9	11	25	-14	0
10	32	29	3	1

$$ATE = E(\delta_i) = 0.8$$

$$ATT = E(\delta_i|D_i = 1) = 8.5$$

$$ATU = E(\delta_i | D_i = 0) = -\frac{26}{6} \approx -4.33$$

Note that

$$ATE = p * ATT + (1 - p) * ATU$$

 $0.8 = 0.4 * 8.5 + 0.6 * - 4.33$

Difference without the program Treated-Untreated=11- $\frac{158}{6} \approx -15.33$

ACT preparation-class and ACT scores with full knowledge (3)

Students	Y_{i1}	Y_{i0}	$\delta_i = Y_{i1} - Y_{i0}$	D_i
1	14			1
2		22		0
3	18			1
4		29		0
5	14			1
6		24		0
7		36		0
8		22		0
9		25		0
10	32			1

$$ATE = E(\delta_i) = 0.8$$

$$ATT = E(\delta_i|D_i = 1) = 8.5$$

$$ATU = E(\delta_i|D_i = 0) = -\frac{26}{6} \approx -4.33$$

• However, we do not know Y_{i0} for those that participated in the ACT program. We also do not know Y_{i1} for those that did not attend the program.

Example: ACT preparation-class and ACT scores (4)

Student s	Y	D_i
1	14	1
2	22	0
3	18	1
4	29	0
5	14	1
6	24	0
7	36	0
8	22	0
9	25	0
10	32	1 _{Cau}

$$ATE = E(\delta_i) = 0.8$$

$$ATT = E(\delta_i|D_i = 1) = 8.5$$

$$ATU = E(\delta_i|D_i = 0) \approx -4.33$$

Difference without the program=11- $\frac{158}{6} \approx -15.33$

 The differences in ACT scores between the treated and untreated groups

$$E(Y_i|D_i = 1) - E(Y_i|D_i = 0)$$

Example: ACT preparation-class and ACT scores (5)

Student s	Y	D_i
1	14	1
2	22	0
3	18	1
4	29	0
5	14	1
6	24	0
7	36	0
8	22	0
9	25	0
10	32	1 Cau

$$ATE = E(\delta_i) = 0.8$$

$$ATT = E(\delta_i|D_i = 1) = 8.5$$

$$ATU = E(\delta_i|D_i = 0) \approx -4.33$$

Difference without the program=11- $\frac{158}{6} \approx -15.33$

 The differences in ACT scores between the treated and untreated groups

$$E(Y_i|D_i = 1) - E(Y_i|D_i = 0) \approx -6.833$$

Substantial biases when relying on the comparison of means

Simple difference in mean outcomes (SDO)

• SDO is the difference between the population average outcome for the treatment and control groups, and can be approximated by the sample averages:

$$SDO = E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

SDO is an estimate of the ATE but SDO may be biased

Decompose SDO

 The simple difference in mean outcomes can be decomposed into three parts:

SDO =
$$E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

= ATE
+ $E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]$

$$+(1-\pi)(ATT-ATU)$$

Parameter of interest

Selection bias

Heterogeneous treatment effect weighted by the share of the population in the control group (π is the percent in the treatment group)

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

The expression of the previous equation could be transformed as below

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi(E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 1]) + (1 - \pi)(E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0])$$

We start by rearranging the expression of ATE and separate different expressions

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

We start by rearranging the expression of ATE and separate different expressions

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

We need selection, which equals to $E[Y_{i0}|D_i=1]-E[Y_{i0}|D_i=0]$ So we introduce those two terms in our equation

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$
$$-E[Y_{i0}|D_i = 1] + E[Y_{i0}|D_i = 0] + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

We need selection, which equals to $E[Y_{i0}|D_i=1]-E[Y_{i0}|D_i=0]$ So we introduce those two terms in our equation

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0] + E[Y_{i0}|D_i = 0]$$

$$+ E[Y_{i0}|D_i = 1] - Selection - E[Y_{i0}|D_i = 0]$$

We need $\pi - 1$, so we combine different terms and introduce $E[Y_{i1}|D_i = 1]$ to get it.

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0] + E[Y_{i0}|D_i = 0]$$

$$+ E[Y_{i0}|D_i = 1] - Selection - E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0] + E[Y_{i0}|D_i = 0] + E[Y_{i0}|D_i = 0] + E[Y_{i1}|D_i = 1] - E[Y_{i1}|D_i = 1]$$

We need $\pi - 1$, so we combine different terms and introduce $E[Y_{i1}|D_i = 1]$ to get it.

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

$$ATE = -(1 - \pi)E[Y_{i1}|D_i = 1] + (1 - \pi)E[Y_{i0}|D_i = 1] + (1 - \pi)E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - (1 - \pi)E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i1}|D_i = 1]$$

We need $\pi - 1$, so we combine different terms and introduce $E[Y_{i1}|D_i = 1]$ to get it.

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

$$ATE = -(1 - \pi)E[Y_{i1}|D_i = 1] + (1 - \pi)E[Y_{i0}|D_i = 1] + (1 - \pi)E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - (1 - \pi)E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i1}|D_i = 1]$$

$$ATE = -(1 - \pi)(E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 1] - E[Y_{i1}|D_i = 0] + E[Y_{i0}|D_i = 0])$$

$$-Selection + SDO$$

Rearrange the previous equation,

$$\begin{split} E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 0] &= SDO \\ E[Y_{i0}|D_i = 1] - (1 - \pi)E[Y_{i1}|D_i = 1] &= - \text{ATT} \\ E[Y_{i1}|D_i = 0] - (1 - \pi)E[Y_{i1}|D_i = 0] &= \text{ATU} \end{split}$$

$$ATE = SDO - (E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]) - (1 - \pi)(ATT - ATU)$$

$$ATE = \pi ATT + (1 - \pi)ATU$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$ATE = \pi E[Y_{i1}|D_i = 1] - \pi E[Y_{i0}|D_i = 1] + E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - \pi E[Y_{i1}|D_i = 0] + \pi E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

$$ATE = -(1 - \pi)E[Y_{i1}|D_i = 1] + (1 - \pi)E[Y_{i0}|D_i = 1] + (1 - \pi)E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] - (1 - \pi)E[Y_{i0}|D_i = 0]$$

$$-Selection + E[Y_{i1}|D_i = 1]$$

$$ATE = -(1 - \pi)(ATT - ATU)$$

$$-Selection + SDO$$

Back to our example

- $ATE = E(\delta_i) = 0.8$
- $ATT = E(\delta_i | D_i = 1) = 8.5$
- $ATU = E(\delta_i | D_i = 0) = -\frac{26}{6} \approx -4.33$
- Difference without the program=11- $\frac{158}{6} = -\frac{92}{6} \approx -15.33$

SDO =
$$E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 0]$$

$$= ATE + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0] + (1 - \pi)(ATT - ATU)$$

$$= 0.8 + (-15.33) + (1 - 0.4)(8.5 - (-4.33)) = -6.83$$

When SDO is not biase $\oint_{0} = ATE + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0] + (1 - \pi)(ATT - ATU)$

• SDO is not necessarily biased in all situations. We can use SDO when $(Y_{i1}, Y_{i0}) \perp D_i$

In this simple case, we do not consider other factors.

Independence assumption: The treatment is independent of the potential outcomes.

Be achieved through randomization of the treatment assignment.

Coin flips, lottery, sorted by birthday... ...

Random assignment means

$$E[Y_{i1}|D_i = 1] - E[Y_{i1}|D_i = 0] = 0$$

$$E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0] = 0$$

SDO =
$$ATE + E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0] + (1 - \pi)(ATT - \pi)$$

Eliminating the selection and heterogenous treatment effect bias

$$E[Y_{i1}|D_i = 1] - E[Y_{i1}|D_i = 0] = 0$$

 $E[Y_{i0}|D_i = 1] - E[Y_{i0}|D_i = 0] = 0$

Selection Bias

$$E[Y_{i1}|D_i = 1] - E[Y_{i1}|D_i = 0] = 0$$

Heterogenous treatment effect bias

$$(1-\pi)(ATT-ATU)$$

We just need ATT - ATU = 0

$$ATT - ATU = E[Y_{i1}|D_i = 1] - E[Y_{i0}|D_i = 1]$$
$$- E[Y_{i1}|D_i = 0] + E[Y_{i0}|D_i = 0]$$
$$= 0$$

However, most times random assignment are not possible!

The SUTVA in the estimates of ATE, ATT, & ATU

- Potential outcomes model places a limit on what we can measure: "the stable unit-treatment value assumption" (SUTVA) (Rubin, 1978, 1980, 1990)
- SUTVA means that average treatment effects are parameters that assume
 - (1) homogenous dosage and
 - (2) potential outcomes are invariant to who else (and how many) is treated.

SUTVA: Homogenous dose

- The treatment is received in homogeneous does to all units.
 - Teacher partiality?
 - Assigned to different classes?
 - Exposure to different peers(classmates)?
- Easy to imagine violations of the homogenous does assumptions. But, not a problem, you will be fine if you carefully define the treatment.

SUTVA: Does not affect other units

- The treatment should not affect the untreated units in any ways.
- However, it is common to have spillover effects. In our cases, potential spillover happens when participants
 - share lecture materials, note, slides, and etc.
 - offer tutoring to their classmates
 - rise expectation of their classmates
 - •
- Only change partial equilibrium (局部均衡) only
 - The treatment only change individuals' outcome, and does not affect general equilibrium
 - E.g., Expanding college lead to increases the supply of college educated workers in the market, and individuals become more difficult in finding jobs

Another slide on spillover (1)

- Contagion: The effect of being vaccinated on one's probability of contracting a disease depends on whether others have been vaccinated.
- Displacement: Police interventions designed to suppress crime in one location may displace criminal activity to nearby locations.
- 3. Communication: Interventions that convey information about commercial products, entertainment, or political causes may spread from individuals who receive the treatment to others who are nominally untreated.

Another slide on spillover (2)

- 4. Social comparison: An intervention that offers housing assistance to a treatment group may change the way in which those in the control group evaluate their own housing conditions.
- 5. Signaling: Policy interventions are sometimes designed to "send a message" to other units about what the government intends to do or what it has the capacity to do.
- 6. Persistence and memory: Within-subjects experiments, in which outcomes for a given unit are tracked over time, may involve "carryover" or "anticipation"

Questions?