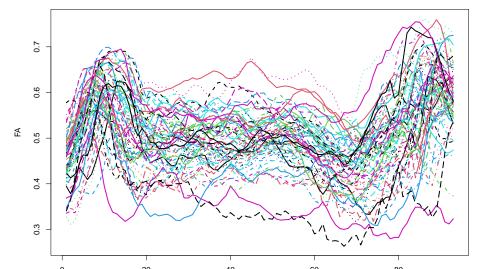
Random Functions

School of Statistics and Data Science

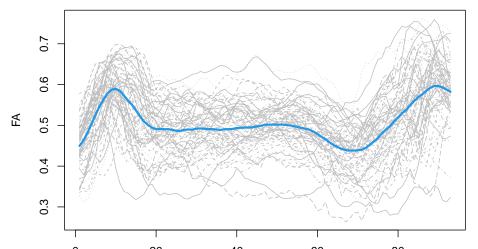
Diffusion Tensor Imaging Example

Fractional anisotropy (FA) is a measure of water diffusion in the brain. We consider FA tract profiles for the corpus callosum (CCA) in MS patients.



Sample Mean

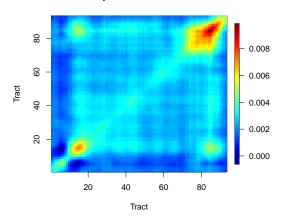
$$\hat{\mu}(t) = \frac{1}{n} \sum_{i=1}^{n} X_i(t)$$

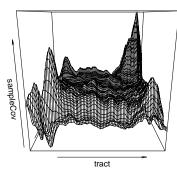


Sample Covariance

$$\hat{c}(s,t) = \frac{1}{n-1} \sum_{i=1}^{n} \{X_i(s) - \bar{X}(s)\} \{X_i(t) - \bar{X}(t)\}$$

Sample covariance of FA





Square Integrable Functions

• A function $f(t): T \to \mathbb{R}$ is said to be square integrable, $f \in L^2$ if

$$\int_T f(t)^2 dt < \infty$$

• Let $f, g \in L^2$, the **inner product** < f, g > is defined as

$$\langle f,g\rangle := \int_T f(t)g(t)dt$$

The inner product norm and inner product distance

$$||f|| = \left\{ \int_t f(t)^2 dt \right\}^{1/2}; \quad d(f,g) = ||f - g|| = \left[\int_t \{f(t) - g(t)\}^2 \right]^{1/2}$$

• $L^2[T]$ is a Hilbert Space

Random Variables in a General Metric Space S

- Let (Ω, B, P) be a probability space with sample space Ω , σ -algebra B and probability measure P
- ullet Let S be a separable metric space
- We say that the mapping $X : \Omega \to S$ is a random element in S if $X^{-1}(A) \in B$ for all Borel sets A.

Examples

- \bullet $S = \mathbb{R}$, $X : \Omega \to \mathbb{R}$ is a random variable
- ② $S = \mathbb{R}^k$, $X : \Omega \to \mathbb{R}^k$ is a random vector
- - A random element in $X:\Omega \to S$ induces a probability measure on S defined by

$$\pi(A) = P\{X^{-1}(A)\} = P\{\omega \in \Omega : X(\omega) \in A\} = P(X \in A)$$

• We call π the distribution of X

School of Statistics and Data Science

Example: Random Variable in $L^2[0,1]$

Consider $\Omega=\{0,1,2\}$, $B=\{\phi,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$, and P, s.t. $P(\omega=0)=P(\omega=1)=P(\omega=2)=1/3$

ullet Define $X:\Omega
ightarrow \mathit{L}^{2}[0,1]$ as

$$X(t,\omega) = X(t) = X = \left\{ egin{array}{ll} 0 & \mbox{if} & \omega = 0 \ \sin(2\pi t) & \mbox{if} & \omega = 1 \ \cos(2\pi t) & \mbox{if} & \omega = 2 \end{array}
ight.$$

ullet $X:\Omega
ightarrow \mathit{L}^{2}[0,1]$ is a random variable in $\mathit{L}^{2}[0,1]$

Expectation in $L^2[0,1]$

• A random variable $X: \Omega \to H = L^2[0,1]$ is said to be **integrable** if

$$E||X|| = E\left[\left\{\int X(t)^2 dt\right\}^{1/2}\right] < \infty$$

• A random variable $X : \Omega \to H$ is said to be **square integrable** if

$$|E||X||^2 = E\left[\int X(t)^2 dt\right] < \infty$$

• Def. Expectation of X, $E[X] = \mu$. If X is square integrable, then there exist a unique $\mu \in L^2$ s.t.

$$E[\langle f, X \rangle] = \langle f, \mu \rangle$$

for any $f \in L^2$. It follows that $\mu(t) = E[X(t)]$ almost everywhere.

Covariance in $L^2[0,1]$

- Without loss of generality assume $X:\Omega\to L^2[0,1]$ be a square integrable random function with E(X)=0
- *Def.* The **covariance operator** of X, C_X is defined by

$$C_X(f) = E[\langle X, f \rangle X] = E\left[\left\{\int X(s)f(s)ds\right\}X(t)\right] = \int c_X(t,s)f(s)\,ds$$
 for any $f \in L^2[0,1]$

• C_X is completely determined by the **covariance function**

$$c_X(t,s) = E\{X(t)X(s)\}, \ s,t \in [0,1]$$

- ullet C_X is a covariance operator iff
- ① C_X is symmetric, i.e. $\langle C_X(f), y \rangle = \langle f, C_X(y) \rangle$ for any $f, y \in L^2[0, 1]$
- ② C_X is nnd, i.e. $\langle C_X(f), f \rangle \ge 0$, for any $f \in L^2[0,1]$
- ① The eigenvalues of C_X satisfy $\sum_{j=1}^{\infty} \lambda_j < \infty$

Statistical Summaries

Consider $X_1(t), \ldots, X_n(t)$ iid $t \in [0, 1]$

• Sample mean function

$$\hat{\mu}(t) = \frac{1}{n} \sum_{i=1}^{n} X_i(t)$$

• Sample covariance surface

$$\hat{c}_X(s,t) = \frac{1}{n-1} \sum_{i=1}^n \{X(s) - \hat{\mu}(s)\} \{X(t) - \hat{\mu}(t)\}$$

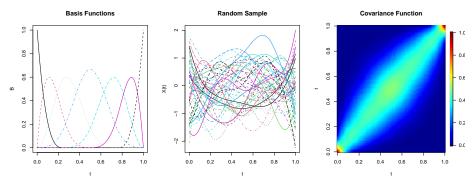
Sample covariance operator

$$\hat{C}_X(t) = \frac{1}{n-1} \sum_{i=1}^n \langle X_i(t) - \hat{\mu}(t), x \rangle \left\{ X(t) - \hat{\mu}(t) \right\}$$

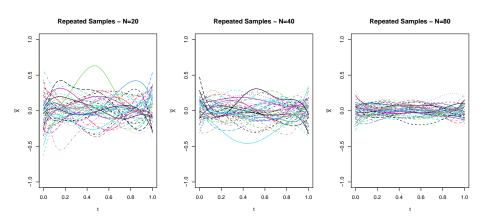
Example: Gaussian Process

- Let $X(t) = B(t)^T \beta$, with $B(t) \in \mathbb{R}^k$ known set of basis functions, and $\beta \sim N(0, I_p)$.
- With E(X) = 0, and $c_X\{X(s), X(t)\} = B(s)^T B(t)$

\vskip .5in



Behavior of sample mean function



Convergence of Random Functions

Let $\{X_n\}_{n\geq 1}$ be a sequence of random functions in $L^2[0,1]$, and X be a random function in $L^2[0,1]$.

• Def. $\{X_n\}_{n\geq 1}$ converges in probability to X, $X_n\to_p X$, if for any $\epsilon>0$.

$$P\{\omega \in \Omega : d(X_n(\omega), X(\omega)) > \epsilon\} = P\{d(X_n, X) > \epsilon\} \to 0$$

Equivalently

$$\lim_{n\to\infty} P\{d(X_n,X) > \epsilon\} = 0$$

• Def. $\{X_n\}_{n\geq 1}$ converges in distribution to X, $X_n \to_d X$, if the distribution π_n of X_n converges weakly to the distribution π of X, i.e.

$$\int g d\pi_n \to \int f d\pi$$

for any bounded continuous real function on [0, 1].

Consistency of the Sample Mean and Covariance

If X_1, \ldots, X_n are iid in L^2 and have the same distribution of X, assumed to be square integrable, with expectation μ and covariance c_X

ullet Thm. Consistency of the sample mean function $\hat{\mu}$

$$E(\hat{\mu}) = \mu$$
 and $E||\hat{\mu} - \mu||^2 = O(n^{-1})$

• Thm. Consistency of the sample covariance function \hat{c}_X

$$E\left\{\int [\hat{c}_X(s,t)-c_X(s,t)]\,ds\,dt\right\}\leq n^{-1}E||X||^4.$$

Therefore \hat{c}_X is an L^2 -consistent estimator of the covariance function, provided $E||X||^4<\infty$

Convergence in Distribution: Gaussian Functions

Let $X : \Omega \to H$, with H separable Hilbert space (e.g. $H = L^2$)

 Def. The Characteristic Functional of a random function X is defined by

$$\varphi_X(f) = E\{\exp(i\langle f, X\rangle)\}$$

for any $f \in H$

 Def. A random function X is said to be Gaussian if it characteristic function has the form

$$\varphi_X(f) = \exp\left\{i\left\langle\mu,f\right\rangle - \frac{1}{2}\left\langle C_X(f),f\right\rangle\right\}$$

where μ is the expectation and $C_X(f)$ is the covariance operator.

• **Thm.** A random function is Gaussian with $\mu = 0$ (wlog.) iff $\langle f, X \rangle \sim \mathcal{N}(\cdot, \cdot)$, for any $f \in \mathcal{H}$

Convergence in Distribution: CLT in Hilbert Space

Consider X_1, \ldots, X_2 iid withe the same distribution as $X: \Omega \to H$, square integrable with expected value μ and covariance operator C_X

• Thm. The sequence of random functions

$$n^{-1/2} \sum_{i=1}^{n} (X_i - \mu) \to_d Z$$

where Z is a Gaussian random function with E(Z)=0 and covariance operator \mathcal{C}_X .

Asymptotic Normality of Sample Summaries

Consider X_1, \ldots, X_2 iid withe the same distribution as $X: \Omega \to H$, square integrable $(E||X||^2 < \infty)$ with expected value μ and covariance operator C_X

ullet The sample mean $\hat{\mu}$ is asymptotically normal, i.e.

$$n^{1/2}(\hat{\mu}-\mu) \rightarrow_d N(0,C)$$
, in H

where
$$C = E[(X - \mu) \otimes (X - \mu)]$$

• If $E||X||^4 < \infty$, then

$$n^{1/2}(\hat{C}_X - C_X) \rightarrow_d N(0,\Gamma), \text{ in } S$$

where
$$\Gamma = E\left[\left\{\left(X - \mu\right) \otimes \left(X - \mu\right) - C\right\} \otimes \left\{\left(X - \mu\right) \otimes \left(X - \mu\right) - C\right\}\right]$$

Thank You!

Questions? Comments?